Property P in modular metric spaces

Keywords: Fixed point, ∅-weak contraction, modular metric spaces, property P

Abstract


Introduction/purpose: The aim of this paper is to present the concept of the generalized weak contractive condition involving various combinations of d(x,y) in modular metric spaces.

Methods: Conventional theoretical methods of functional analysis.

Results: This study presents the result of (Murthy & Vara Prasad, 2013) for a single-valued mapping satisfying a generalized weak contractive condition involving various combinations of d(x,y). It is generalized in the setting of modular metric spaces, and then it is proved that this single-valued map satisfies the property P. In the end, an example is given in support of  the result. 

Conclusion: With proper generalisations, it is possible to formulate well-known results of classical metric spaces to the case of modular metric spaces.

Author Biography

Ljiljana R. Paunović, University in Priština-Kosovska Mitrovica,Teacher Education Faculty, Leposavić, Republic of Serbia

Docent na Učiteljskom fakultetu, naučna oblast   Matematika, magistratura iz oblasti numeričke analize (odbranjen magistarski rad na Prirodno-matematičkom fakultetu u Kragujevcu), doktorat iz oblasti funkcionalne analize (odbranjen na pmf-u u Kragujevcu).

 

References

Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French). Available at: Available at: https://doi.org/10.4064/fm-3-1-133-181

 

Chistyakov, V.V. 2010a. Modular metric spaces, I: Basic concepts. Nonlinear Analysis: Theory, Methods and pplications, 72(1), pp.1-14. Available at: https://doi.org/10.1016/j.na.2009.04.057

Chistyakov, V.V. 2010b. Modular metric spaces, II: Application to superposition operators. Nonlinear Analysis: Theory, Methods and Applications, 72(1), pp.15-30. Available at: https://doi.org/10.1016/j.na.2009.04.018

Chistyakov, V.V. 2006. Metric modulars and their application. Doklady  Mathematics, 73(1), pp.32-35. Available at: https://doi.org/10.1134/S106456240601008X

 

Chistyakov, V.V. 2008. Modular Metric Spaces Generated by F-Modular. Folia Mathematica, 15(1), pp.3-24 [online]. Available at: http://fm.math.uni.lodz.pl/artykuly/15/01chistyakov.pdf [Accessed: 10 March 2022]

Hussain, N., Khamsi, M. & Latif, A. 2011. Banach operator pairs and common fixed points in modular function spaces. Fixed Point Theory and Applications, art.number:75. Available at: https://doi.org/10.1186/1687-1812-2011-75

 

Jeong, G.S. & Rhoades, B.E. 2005. Maps for which F( ) = F( ). Demonstratio Mathematica, 40(3), pp.671-680. Available at: https://doi.org/10.1515/dema-2007-0317

 

Khamsi, M.A. 1996. A convexity property in Modular function spaces. Mathematica Japonica, 44(2), pp.269-279 [online]. Available at: http://69.13.193.156/publication/acpimfs.pdf [Accessed: 10 March 2022]

Khamsi, M.A. & Kirk, W.A. 2001. An Introduction to Metric Spaces and Fixed Point Theory. New York, NY, USA: John Wiley & Sons. Available at: ISBN: 978-0-471-41825-2.

 

Kozlowski, W.M. 1988. Modular Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics. New York, NY, USA: Marce Dekker.

 

Mongkolkeha, C., Sintunavarat, W. & Kumam, P. 2011. Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory and Applications, art.number:93. Available at: https://doi.org/10.1186/1687-1812-2011-93

Published
2022/06/24
Section
Original Scientific Papers