Fixed point theorem in a partial b-metric space applied to quantum operations

Keywords: partial b-metric space, order-preserving mapping, quantum operation, fidelity of quantum state, Bloch vector

Abstract


Introduction/purpose: A fixed point theorem of an order-preserving mapping on a complete partial b-metric space satisfying a contractive condition is constructed.

Methods: Extension of the results of Batsari et al.

Results: The fidelity of quantum states is used to construct the existence of a fixed quantum state.

Conclusions: The fixed quantum state is associated to an order-preserving quantum operation.

References

Aamri, M. & El Moutawakil, D. 2002. Some new common fixed point theorems under strict contractive conditions. Journal of Mathematical Analysis and Applications, 270(1), pp.181-188. Available at:
https://doi.org/10.1016/S0022-247X(02)00059-8

Agarwal, R.P., Karapinar, E., O’Regan, D. & Roldán-López-de-Hierro, A.F. 2015. Fixed point theory in metric type spaces. Springer, Cham. Available at: https://doi.org/10.1007/978-3-319-24082-4. ISBN: 978-3-319-24082-4

Arias, A., Gheondea, A. & Gudder, S. 2002. Fixed Points of Quantum Operations. Journal of Mathematical Physics, 43(12), pp.5872-5881. Available at: https://doi.org/10.1063/1.1519669

Bakhtin, I. 1989. The contraction mapping principle in quasimetric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30, pp.26-37.

Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French). Available at: https://doi.org/10.4064/fm-3-1-133-181

Batsari, U.Y. & Kumam, P. 2018. A Globally Stable Fixed Point in an Ordered Partial Metric Space. In: Anh, L., Dong, L., Kreinovich, V. & Thach, N. (Eds.) Econometrics for Financial Applications. ECONVN 2018. Studies in Computational Intelligence, 760, pp.360-368. Springer, Cham. Available at: https://doi.org/10.1007/978-3-319-73150-6_29

Batsari, U.Y. & Kumam, P. 2020. Some Generalised Fixed Point Theorems Applied to Quantum Operations. Symmetry, 12(5), art.ID:759. Available at: https://doi.org/10.3390/sym12050759

Batsari, U.Y., Kumam, P. & Sitthithakerngkiet, K. 2018. Some globally stable fixed points in b-metric spaces. Symmetry, 10(11), art.ID:555. Available at: https://doi.org/10.3390/sym10110555

Bourbaki, N. 1974. Topologie Generale. Paris, France: Herman. ISBN-13: 978-2705656928.

Brouwer, L.E.J. 1911. Über Abbildung von Mannigfaltigkeiten. Mathematische Annalen, 71, pp.97-115. Available at: https://doi.org/10.1007/BF01456931

Browder, F.E. 1959. On a generalization of the Schauder fixed point theorem. Duke Mathematical Journal, 26(2), pp.291-303. Available at: https://doi.org/10.1215/S0012-7094-59-02629-8

Bures, D. 1969. An Extension of Kakutanis Theorem on Infinite Product Measures to the Tensor Product of Semifinite w*-Algebras. Transactions of the American Mathematical Society, 135, pp.199-212. Available at:
https://doi.org/10.2307/1995012

Busch, P. & Singh, J. 1998. Lüders Theorem for Unsharp Quantum Measurements. Physics Letters A, 249)(1-2), pp.10-12. Available at: https://doi.org/10.1016/S0375-9601(98)00704-X

Chen, J-L., Fu, L., Ungar, A.A. & Zhao, X-G. 2002. Alternative fidelity measure between two states of an N-state quantum system. Physical Review A, 65(art.number:054304). Available at: https://doi.org/10.1103/PhysRevA.65.054304

Chidume, C.E. & Chidume, C.O. 2014. Foundations of Mathematical Analysis. Ibadan, Nigeria: University of Ibadan, Ibadan University Press Publishing House. ISBN: 978-978-8456-32-2

Czerwik, S. 1993. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), pp.5-11 [online]. Available at: https://dml.cz/handle/10338.dmlcz/120469 [Accessed: 20 March 2022].

Davies, E.B. 1976. Quantum Theory of Open Systems. London, UK: Academic Press. ISBN-13: 978-0122061509.

Debnath, P., Konwar, N. & Radenović, S. 2021. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences. Springer Verlag, Singapore. Available at: https://doi.org/10.1007/978-981-16-4896-0

Du, W-S., Karapinar, E. & He, Z. 2018. Some Simultaneous Generalizations of Well-Known Fixed Point Theorems and Their Applications to Fixed Point Theory. Mathematics, 6(7), art.ID:117. Available at: https://doi.org/10.3390/math6070117

Göhde, D. 1965. Zum Prinzip der Kontraktiveen abbildurg. Mathematische Nachrichten, 30(3-4), pp.251-258. Available at: https://doi.org/10.1002/mana.19650300312

Kannan, R. 1972. Some results on fixed points - IV. Fundamenta Mathematicae, 74, pp.181-187. Available at: https://doi.org/10.4064/fm-74-3-181-187

Khan, M.S., Swaleh, M. & Sessa, S. 1984. Fixed point theorems by altering distances between the points. Bulletin of the Australian Mathematical Society, 30(1), pp.1-9. Available at: https://doi.org/10.1017/S0004972700001659

Kirk, W. & Shahzad, N. 2014. Fixed Point Theory in Distance Spaces. Springer International Publishing Switzerland. Available at: https://doi.org/10.1007/978-3-319-10927-5

Knaster, B. 1928. Un theoreme sur les fonctions densembles. Annales de la Société polonaise de mathématique, 6, pp.133-134.

Leray, J. & Schauder, J. 1934. Topologie et equations fonctionnelles. Annales scientifiques de l’École Normale Supérieure, 51, pp.45-78. Available at: https://doi.org/10.24033/asens.836

Long, L. & Zhang, S. 2011. Fixed points of commutative super-operators. Journal of Physics A: Mathematical and Theoretical, 44(9), art.ID:095201. Available at: https://doi.org/10.1088/1751-8113/44/9/095201

Lüders, G. 1950. Über die Zustandsänderung durch den Meßprozeß. Annalen der physic, 443(5-8), pp.322-328. Available at: https://doi.org/10.1002/andp.19504430510

Matthews, S.G. 1994. Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1) General Topology and Applications, pp.183-197. Available at: https://doi.org/10.1111/j.1749-6632.1994.tb44144.x

Nielsen, M.A. & Chuang, I.L. 2000. Quantum Computation and Quantum Information. Cambridge, UK: Cambridge University Press. Available at: https://doi.org/10.1017/CBO9780511976667

Schauder, J. 1930. Der Fixpunktsatz in Funktionalraumen. Studia Mathematica, 2(1), pp.171-180 [online]. Available at: https://eudml.org/doc/urn:eudml:doc:217247 [Accessed: 22 March 2022].

Seevinck, M.P. 2003. Quantum Operations and Measurement, 2nd ed. Utrecht, The Netherlands: Utrecht University [online]. Available at: http://mpseevinck.ruhosting.nl/seevinck/lezingoviedo03a.pdf [Accessed: 22
March 2022].

Shukla S. 2014. Partial b-metric spaces and fixed point theorems. Mediterranean Journal of Mathematics, 11, pp.703-711. Available at: https://doi.org/10.1007/s00009-013-0327-4

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5(2), pp.285-309. Available at: https://doi.org/10.2140/pjm.1955.5.285

Tarski, A.A. 1949. A fixpoint theorem for lattices and its applications (preliminary report). Bulletin of the American Mathematical Society, 1949(55), 1051-1052.

Zhang, H. & Ji, G. 2012. A Note on Fixed Points of General Quantum Operations. Reports on Mathematical Physics, 70(1), pp.111-117. Available at: https://doi.org/10.1016/S0034-4877(13)60016-6

Zhang, H. & Si, H. 2016. Fixed Points Associated to Power of Normal Completely Positive Maps*. Journal of Applied Mathematics and Physics, 4(5), pp.925-929. Available at: https://doi.org/10.4236/jamp.2016.45101

Published
2022/06/24
Section
Original Scientific Papers