Kinetic simulation of vacuum plasma expansion beyond the “plasma approximation”

Keywords: physical kinetics, vacuum plasma, plasma expansion

Abstract


Introduction/purpose: One of the key approaches to solving an entire class of modern plasma physics problems is the so-called "plasma approximation". The most general definition of the "plasma approximation" is a theoretical approach to the electric field calculation of a system of charges under the electric quasi-neutrality condition. The purpose of this paper is to compare the results of the numerical simulation of the kinetic processes of the quasi-neutral plasma bunch expansion to the analytical solution of a similar kinetic model but in the "plasma approximation".

Methods: The given results are obtained by the methods of deterministic modeling based on the numerical solution of the system of Vlasov-Poisson equations.

Results: The provided comparison of the analytical expressions for the solution of kinetic equations in the "plasma approximation" and the numerical solutions of the Vlasov-Poisson equations system convincingly show the limitations of the "plasma approximation" in some important cases of the considered problem of plasma formation decay.

Conclusion: The theoretical results of this work are of great importance for understanding the shortcomings of the "plasma approximation", which can manifest themselves in practical applications of computational plasma physics.

References

Anders, A. 1997. Ion charge state distributions of vacuum arc plasmas: The origin of species. Physical Review E, 55(1), pp.969-981. Available at: https://doi.org/10.1103/physreve.55.969

Baitin, A.V. & Kuzanyan, K.M. 1998. A self-similar solution for expansion into a vacuum of a collisionless plasma bunch. Journal of Plasma Physics, 59(1), pp.83-90. Available at: https://doi.org/10.1017/s0022377897005916

Bugaev, S.P., Litvinov, E.A., Mesyats, G.A. & Proskurovskiĭ, D.I. 1975. Explosive emission of electrons. Soviet Physics Uspekhi, 18(1), pp.51-61. Available at: https://doi.org/10.1070/pu1975v018n01abeh004693

Chen, F.F. 1984. Introduction to Plasma Physics and Controlled Fusion. New York, NY: Springer. Available at: https://doi.org/10.1007/978-1-4757-5595-4

Dorozhkina, D.S. & Semenov, V.E. 1998. Exact Solution of Vlasov Equations for Quasineutral Expansion of Plasma Bunch into Vacuum. Physical Review Letters, 81(13), pp.2691-2694. Available at: https://doi.org/10.1103/physrevlett.81.2691

Gurevich, A.V., Pariiskaya, L.V. & Pitaevskii, L.P. 1966. Self-similar motion of rarefied plasma. Soviet Phisics JETP, 22(2), pp.449-454 [online]. Available at: http://jetp.ras.ru/cgi-bin/dn/e_022_02_0449.pdf [Accessed: 5 April 2022].  

Kozhevnikov, V., Kozyrev, A., Kokovin, A. & Semeniuk, N. 2021. The Electrodynamic Mechanism of Collisionless Multicomponent Plasma Expansion in Vacuum Discharges: From Estimates to Kinetic Theory. Energies, 14(22), art.ID:7608. Available at: https://doi.org/10.3390/en14227608

Knorr, G., Joyce, G. & Marcus, A. 1980. Fourth-order Poisson solver for the simulation of bounded plasmas. Journal of Computational Physics, 38(2), pp.227-236. Available at: https://doi.org/10.1016/0021-9991(80)90054-6

Nishikawa, K. & Wakatani, M. 1990. Basic Properties of Plasma. In: Plasma Physics, 8, pp.6-13. Springer, Berlin, Heidelberg: Springer Series on Atoms+Plasmas. Available at: https://doi.org/10.1007/978-3-662-02658-8_2

Vlasov, A.A. 1968. The vibrational properties of an electron gas. Soviet Physics Uspekhi, 10(6), pp.721-733. Available at: https://doi.org/10.1070/pu1968v010n06abeh003709

Zubarev, N.M., Kozhevnikov, V.Y., Kozyrev, A.V., Mesyats G.A., Semeniuk, N.S., Sharypov, K.A., Shunailov, S.A. & Yalandin, M.I. 2020. Mechanism and dynamics of picosecond radial breakdown of a gas-filled coaxial line. Plasma Sources Science and Technology, 29(12), art.ID:125008. Available at: https://doi.org/10.1088/1361-6595/abc414

Published
2022/06/24
Section
Original Scientific Papers