Influence of a powder feed rate on the properties of the plasma sprayed chromium carbide- 25% nickel chromium coating

  • Mihailo R. Mrdak IMTEL komunikacije a.d.
Keywords: property, powders, Plasmas, feed rate, Coatings, Chromium,

Abstract


The plasma spray process is a leading technology of powder depositing in the production of coatings widely used in the aerospace industry for the protection of new parts and for the repair of worn ones. Cermet 75Cr3C2 - 25Ni(Cr) coatings based on Cr3C2 carbides are widely used to protect parts as they retain high values of hardness, strength and resistance to wear up to a temperature of 850°C. This paper discusses the influence of the parameters of the plasma spray deposition of 75Cr3C2 - 25Ni(Cr) powder on the structure and mechanical properties of the coating. The powder is deposited using plasma spraying at atmospheric pressure (APS). The plasma gas is He, which is an inert gas and does not react with the powder; it produces dense plasma with lower heat content and less incorporated ambient air in the plasma jet thus reducing temperature decomposition and decarburization of Cr3C2 carbide.. In this study, three groups of coatings were deposited with three different powder feed rates of: 30, 45 and 60 g/min. The  coating with the best properties was deposited on the inlet flange parts of the turbo - jet engine TV2-117A to reduce the influence of vibrations and wear. The structures and the mechanical properties of 75Cr3C2 - 25Ni(Cr) coatings are analyzed in accordance with the Pratt & Whitney standard. Studies have shown that powder feed rates have an important influence on the mechanical properties and structures of 75Cr3C2 - 25Ni(Cr) coatings.

 

Author Biography

Mihailo R. Mrdak, IMTEL komunikacije a.d.
Doctor of Technical Sciences

References

ASM HANDBOOK, Alloy Phase Diagrams, 3rd . United States: ASM International.

Berget, J., Rogne, T., & Bardal, E. 2007. Erosion–corrosion properties of different WC–Co–Cr coatings deposited by the HVOF process—influence of metallic matrix composition and spray powder size distribution. Surface and Coatings Technology, 201(18), str. 7619-7625. doi:10.1016/j.surfcoat.2007.02.032

Bala, N., Singh, H., & Prakash, S. 2007. An overview of characterizations and high temperature behaviour of thermal spray NiCr coatings. Int. J. Mater. Sci., 2(3),pp. 201-218.

Brossard, S., Munroe, P.R., Tran, A.T.T., & Hyland, M.M. 2010. Study of the microstructure of NiCr splats plasma sprayed on to stainless steel substrates by TEM. Surface and Coatings Technology, 204(9-10), pp. 1608-1615.

Fernández, E., García, J.R., Cuetos, J.M., & Higuera, V. 2005. Behaviour of laser treated Cr, Ni coatings in the oxidative atmosphere of a steam boiler. Surface and Coatings Technology, 195(1), pp. 1-7. doi:10.1016/j.surfcoat.2004.11.043

Guilemany, J.M., Fernández, J., Delgado, J., Benedetti, A.V., & Climent, F. 2002. Effects of thickness coating on the electrochemical behaviour of thermal spray Cr3C2–NiCr coatings. Surface and Coatings Technology, 153(2-3), pp. 107-113. doi:10.1016/S0257-8972(01)01679-6

He, J., Ice, M., & Lavernia, E.J. 2000. Synthesis of nanostructured Cr3C2-25(Ni20Cr) coatings. Metallurgical and Materials Transactions A, 31(2), pp. 555-564. doi:10.1007/s11661-000-0290-0

Hillery, R.V. 1986. Coatings for performance retention. Journal of vaccum science and technology A, 4, pp. 2684-2688.

Jankura, D., & Bačová, V. 2009. . Metallic Materials, 47(6), pp. 359-366.

Ji, G., Li, C., Wang, Y., & Li, W. 2006. Microstructural characterization and abrasive wear performance of HVOF sprayed Cr3C2–NiCr coating. Surface and Coatings Technology, 200(24), pp. 6749-6757. doi:10.1016/j.surfcoat.2005.10.005

Kamal, S., Jayaganthan, R., Prakash, S., & Kumar, S. 2008. Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900°C. Journal of Alloys and Compounds, 463(1-2), pp. 358-372. doi:10.1016/j.jallcom.2007.09.019

Kamal, S., Jayaganthan, R., & Prakash, S. 2009. Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2–25%NiCr coatings on nickel- and iron-based superalloys. Surface and Coatings Technology,203(8), pp. 1004-1013. doi:10.1016/j.surfcoat.2008.09.031

Kajihara, M., & Hillert, M. 1990. Thermodynamic evaluation of the Cr-Ni-C system. Metallurgical Transactions A,21(10),pp. 2777-2787. doi:10.1007/BF02646072

Mann, B.S., & Arya, V. 2003. HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades. Wear, 254(7-8), pp. 652-667. doi:10.1016/S0043-1648(03)00253-9

Matthews, S.J., James, B.J., & Hyland, M.M. 2007. Microstructural influence on erosion behaviour of thermal spray coatings. Materials Characterization, 58(1), pp. 59-64. doi:10.1016/j.matchar.2006.03.014

Matthews, S., James, B., & Hyland, M. 2009. The role of microstructure in the mechanism of high velocity erosion of Cr3C2–NiCr thermal spray coatings: Part 1 — As-sprayed coatings. Surface and Coatings Technology, 203(8), pp. 1086-1093. doi:10.1016/j.surfcoat.2008.10.005

Matthews, S., James, B., & Hyland, M. 2009. The role of microstructure in the mechanism of high velocity erosion of Cr3C2–NiCr thermal spray coatings: Part 2 — Heat treated coatings. Surface and Coatings Technology, 203(8), pp. 1094-1100. doi:10.1016/j.surfcoat.2008.10.013

Material Product Data Sheet, Woka 7203 Chromium Carbide - 25% Nickel Chromium Powders, DSMTS-0031. 12012. Sulzer Metco.

Roy, M., Pauschitz, A., Polak, R., & Franek, F. 2006. Comparative evaluation of ambient temperature friction behaviour of thermal sprayed Cr3C2–25(Ni20Cr) coatings with conventional and nano-crystalline grains.Tribology International, 39(1), pp. 29-38. doi:10.1016/j.triboint.2004.11.009

Monticelli, C., Frignani, A., & Zucchi, F. 2004. Investigation on the corrosion process of carbon steel coated by HVOF WC/Co cermets in neutral solution. Corrosion Science, 46(5), pp. 1225-1237. doi:10.1016/j.corsci.2003.09.013

Mrdak, M.R. 2010. Uticaj brzine depozicije praha na mehaničke karakteristike i strukturu APS-NiCr/Al prevlake.Vojnotehnički glasnik, 58(4), pp. 5-16. Taken from http://scindeks.ceon.rs/article.aspx?artid=0042-84691004005M0

Mrdak, M., & Vencl, A. 2011. Uticaj parametara nanošenja NiCr prevlake plazma sprej postupkom u atmosferskim uslovima na njene mehaničke karakteristike i strukturu. Tehnička dijagnostika, 10(3), pp. 9-14. Taken from http://scindeks.ceon.rs/article.aspx?artid=1451-19751103009M

Mrdak, M. 2012. Study of the properties of plasma deposited layers of nickel-chrome-aluminium-yttrium coatings resistant to oxidation and hot corrosion. Vojnotehnički glasnik, 60(2), pp. 182-201. doi:10.5937/vojtehg1202182M

Mrdak, M. 2013. Characterization of sealing nickel - graphite coating in the system with bonding of nickel-aluminum coating. Vojnotehnički glasnik, 61(1), pp. 68-88.

Picas, J.A., Forn, A., Igartua, A., & Mendoza, G. 2003. Mechanical and tribological properties of high velocity oxy-fuel thermal sprayed nanocrystalline CrCNiCr coatings. Surface and Coatings Technology, 174-175,pp. 1095-1100. doi:10.1016/S0257-8972(03)00393-1

Sukhpal, , Singh, C., Hazoor, S., Buta, S., & Sidhu, S. 2012. Characterisation and Corrosion-Erosion Behaviour of Carbide based Thermal Spray Coatings. Journal of Minerals & Materials Characterization & Engineering, 11(6), pp. 569-586.

Suegama, P.H., Espallargas, N., & Guilemany, J.M. 2006. Electrochemical and structural characterization of heat-treated Cr3C2-NiCr coatings. Journal of the Electrochemical Society, 153,pp. 434-445.

Tillmann, W., Vogli, E., Baumann, I., Kopp, G., & Weihs, C. 2010. Desirability-Based Multi-Criteria Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 75Cr3C2-25(NiCr20) Coatings. J. Therm. Spray Technol, 19(1-2), pp. 392-408.

Verdon, C., Karimi, A., & Martin, J. 1998. A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures. Materials Science and Engineering: A, 246(1-2), pp. 11-24. doi:10.1016/S0921-5093(97)00759-4

Wheeler, D.W., & Wood, R.J.K. 2005. Erosion of hard surface coatings for use in offshore gate valves. Wear, 258(1-4), pp. 526-536. doi:10.1016/j.wear.2004.03.035

Wirojanupatump, S., Shipway, P.H., & Mccartney, D.G. 2001. The influence of HVOF powder feedstock characteristics on the abrasive wear behaviour of CrxCy-NiCr coatings. Wear, 249, pp. 829-837.

Published
2014/04/24
Section
Original Scientific Papers