Technical aspects of flight safety of military aircraft

Keywords: flight safety, military aircraft, aircraft reliability

Abstract


Introduction/purpose: The use of modern military aircraft requires an extraordinary effort of human and material potential to ensure the conditions for the execution of specific tasks. Complex technology, different spatial and temporal conditions of aircraft use impose the need to create organizational and technical conditions to assist the pilot during flight with the aim of safely and completely accomplishing the flight task. The aim of this paper is to identify possible problems in the organization of the flight safety system through the description of the influence of technical factors on flight safety and to find the best solutions for overcoming problems during the life cycle of the aircraft.

Methods: In the research of the subject area, first of all, the analysis of the regulations regulating the field of flight safety was carried out, and then a description of the technical means and their impact on flight safety was carried out.

Results: On the basis of the performed analysis, the activities to ensure the reliability of the aircraft during development and production were defined, and directions for improving flight safety were proposed through the amendments of regulations, organizational and technical as well as technological measures.

Conclusion: The results of the analysis confirm the assumptions about the possible directions of development and improvement of flight safety of military aircraft through improvement and installation of technical systems (devices and equipment), both aviation and ground.

Author Biography

Vlada S. Sokolović, University of Defence in Belgrade, Military Academy, Belgrade, Republic of Serbia

Ph.D, asistant in department of logistics support at Military academy

References

-Airbus Helicopters. 2016. BK117D-2 Training Manual CATB2 Helionix. Chapter 02, Integrated Modular Avionics. Marignane, France: Airbus Helicopters.

Banjac, E., Elez, Z. & Banjac, D. 2017. Analiza uzroka otkaza motora R25-300 na avionima tipa MiG-21 BIS usled degradacije upravljačkih podsklopova membrana i manžetni u pumpama regulatorima osnovnog i forsažnog goriva. Bijeljina, Republic of Srpska, Bosnia and Herzegovina: ORAO A.D. (in Serbian).

Bilbija, B.B. 2017. Aircraft testing in terms of methodology, safety and development of aircraft. Vojnotehnički glasnik/Military Technical Courier, 65(1), pp.45-68. Available at: https://doi.org/10.5937/vojtehg65-12681

Bogdane, R., Gorbacovs, O., Sestakovs, V. & Arandas, I. 2019. Development of a model for assessing the level of flight safety in an airline using concept of risk. Procedia Computer Science, 149, pp.365-374. Available at: https://doi.org/10.1016/j.procs.2019.01.150>

Bolshakov, A.A., Kulik, A.A., Sergushov, I.V. & Skripal, E.N. 2018. Design the Method for Aircraft Accident of Prediction. Mekhatronika, Avtomatizatsiya, Upravlenie, 19(6), pp.416-423 (in Russian) Available at: https://doi.org/10.17587/mau.19.416-423

Čestić, М. 2022. Tehnički aspekti bezbednosti letenja vojnih vazduhoplova. Belgrade: University of Defence in Belgrade (in Serbian).

Duarte, D., Marado, B., Nogueira, J., Serrano, B., Infante, V. & Moleiro, F. 2016. An overview on how failure analysis contributes to flight safety in the Portuguese Air Force. Engineering Failure Analysis, 65, pp.86-101. Available at: https://doi.org/10.1016/j.engfailanal.2016.03.003>

Honcharenko, Y., Martyniuk, O. Radko, O., Blyskun, O., Kolomiiets, Y. & Bilokur, M. 2020. Flight safety fuzzy risk assessment for combat aviation system. In: 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory: IEEE ATIT 2020, Kyiv, Ukraine, pp.132-137, November 25-27.

Hooper, B.J. & O’Hare, D.P.A. 2013. Exploring Human Error in Military Aviation Flight Safety Events Using Post-Incident Classification Systems. Aviation, Space, and Environmental Medicine, 84(8), pp.803-813. Available at: https://doi.org/10.3357/ASEM.3176.2013>

-International civil aviation organization (ICAO). 2018. Safety management manual, 4th edition. Montréal, Quebec: ISBN: 978-92-9258-552-5.

Kublanov, M.S. 2021. Modelirovanie sistem i processov. Moscow: ID Akademii Zhukovskogo MGTU GA (in Russian). (In the original: Кубланов, М.С. 2021. Моделирование систем и процессов. Москва: ИД Академии Жуковского МГТУ ГА).

Kurdel, P., Sedláčková, A.N. & Labun, J. 2019. UAV flight safety close to the mountain massif. Transportation Research Procedia, 43, pp.319-327. Available at: https://doi.org/10.1016/j.trpro.2019.12.047>

Marinković, S.J. & Drenovac, A.Ž. 2015. Human factor impact in military aircraft maintenance. Vojnotehnički glasnik/Military Technical Courier, 63(3), pp.176-199 (in Serbian). Available at: https://doi.org/10.5937/vojtehg63-6496

Miličević, Z.M. & Bojković, Z.B. 2021. From the early days of unmanned aerial vehicles (UAVS) to their integration into wireless networks. Vojnotehnički glasnik/Military Technical Courier, 69(4), pp.941-962, Available at: https://doi.org/10.5937/vojtehg69-33571

-Nacional'nyj centr vertoljotostroenija imeni M.L. Milja i N.I. Kamova. 2019. Bortovye sredstva kontrolja i registracii poletnyh dannyh, Aviacionnoe oborudovanie. Rukovodstvo po tehnicheskoj jekspluatacii Mi-17V-5.0000.00 RE. Moskva: Nacional'nyj centr vertoljotostroenija imeni M.L. Milja i N.I. Kamova (in Russian). (In the original: Национальный центр вертолётостроения имени М.Л. Миля и Н.И. Камова. 2019. Бортовые средства контроля и регистрации полетных данных, Авиационное оборудование. Руководство по технической эксплуатации Ми-17В-5.0000.00 РЭ. Москва: Национальный центр вертолётостроения имени М. Л. Миля и Н. И. Камова.)

Peysakhovich, V., Lefrancois, O., Dehais, F. & Causse, M. 2018. The Neuroergonomics of Aircraft Cockpits: The Four Stages of Eye-Tracking Integration to Enhance Flight Safety. Safety, 4(1), art.number:8. Available at: https://doi.org/10.3390/safety4010008

Pokorni, S.J. 2021. Current state of the application of artificial intelligence in reliability and maintenance. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.578-593.  Available at: https://doi.org/10.5937/vojtehg69-30434

Poussin, H., Rochas, L., Vallée, T., Bertrand, R. & Haber, J. 2017. Human factors in launch flight safety. Journal of Space Safety Engineering, 4(1), pp.45-50. Available at: https://doi.org/10.1016/j.jsse.2017.03.001>

Rudnjanin, S. & Debiјađi, R. 1984. Bioritam i avio-udesi u ЈRV. Glasnik RV i PVO, 40(1), pp.54-57 [online]. Available at: https://archive.org/details/glasnik-rvpvo-br-841/page/n1/mode/2up?view=theater> (in Serbian) [Accessed: 15 July 2022].

Senol, M.B. 2020. Evaluation and prioritization of technical and operational airworthiness factors for flight safety. Aircraft Engineering and Aerospace Technology, 92(7), pp.1049-1061. Available at: https://doi.org/10.1108/AEAT-03-2020-0058

-Službeni vojni list. 14/2018. Pravilnik o letenju voјnih vazduhoplova Republike Srbiјe. Belgrade: Ministarstvo odbrane Republike Srbije (in Serbian).

Solomonov, P.A. 1975. Tehnicheskie voprosy obespechenija bezopasnosti poletov. Moscow: Voennoe izdatel'stvo Ministerstva oborony SSSR (in Russian). (In the original: Соломонов, П.А. 1975. Технические вопросы обеспечения безопасности полетов. Москва: Военное издательство Министерства обороны СССР.)

Solomonov, P.A. 1977. Bezotkaznost' aviacionnoj tehniki i bezopasnost' poletov. Moscow: Izdatel'stvo Transport (in Russian). (In the original: Соломонов, П.А. 1977. Безотказность авиационной техники и безопасность полетов. Москва: Издательство Транспорт.)

Vlačić, S.I., Knežević, A.Z., Grbović, V.M., Vitsas, P.A. & Mihajlovic, M.M.S. 2022. Implementation of the digital training concept in the basic flight training in the Serbian Military Academy. Vojnotehnički glasnik/Military Technical Courier, 70(1), pp.87-108. Available at: https://doi.org/10.5937/vojtehg70-34610

Vorobev', V.G., Zubkov, B.V. & Urinovskij, B.D. 1989. Tehnicheskie sredstva i metody obespechenija bezopasnosti poletov. Moscow: Izdatel'stvo Transport (in Russian). (In the original: Воробевь, В.Г., Зубков, Б.В., Уриновский, Б.Д. 1989. Технические средства и методы обеспечения безопасности полетов. Москва: Издательство Транспорт.)

Zubkov, B.V., Sakach, R.V. & Kostikov, V.A. 2007. Bezopasnost poletov. Moscow: Moskovskij gosudarstvennyj universitet grazhdanskoj aviacii (in Russian). (In the original: Зубков, Б.В., Сакач, Р.В., Костиков, В.А. 2007. Безопасность полетов. Москва: Московский государственный университет гражданской авиации.)

Zuluaga, J.F., Vargas, J.F. & Reina, J.K. 2017. Intelligent Techniques for Identification and Tracking of Meteorological Phenomena that Could Affect Flight Safety. Ciencia y poder aéreo, 12(1), pp.24-35 [online]. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=6223207 [Accessed: 15 July 2022].

Živaljević, M. & Siladić, M. 1997. Some aspects of maintenance of combat aircrafts. Vojnotehnički glasnik/Military Technical Courier, 45(3), pp.274-285 (in Serbian). Available at: https://doi.org/10.5937/VojTehG9703274Z

Published
2022/10/14
Section
Review Papers