Interpolative generalised Meir-Keeler contraction

Keywords: Fuzzy metric space, common fixed points, weak compatibility, Interpolative generalised Meir-Keelar contraction

Abstract


Introduction/purpose: The aim of this paper is to introduce the notion of an interpolative generalised Meir-Keeler contractive condition for a pair of self maps in a fuzzy metric space, which enlarges, unifies and generalizes the Meir-Keeler contraction which is for only one self map. Using this, we establish a unique common fixed point theorem for two self maps through weak compatibility. The article includes an example, which shows the validity of our results.

Methods: Functional analysis methods with a Meir-Keeler contraction.

Results: A unique fixed point for self maps in a fuzzy metric space is obtained.

Conclusions: A fixed point of the self maps is obtained. 

References

Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French). Available at: https://doi.org/10.4064/fm-3-1-133-181

George, A. & Veeramani, P. 1994. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), pp.395-399. Available at: https://doi.org/10.1016/0165-0114(94)90162-7

Grabiec, M. 1988. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), pp.385-389. Available at: https://doi.org/10.1016/0165-0114(88)90064-4

Gregori, V. & Minana, J-J. 2014. Some remarks on fuzzy contractive mappings. Fuzzy Sets and Systems, 251, pp.101-103. Available at: https://doi.org/10.1016/j.fss.2014.01.002

Gregori, V. & Sapena, A. 2002. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2), pp.245-252. Available at: https://doi.org/10.1016/S0165-0114(00)00088-9

Jain, Sho. & Jain, Shi. 2021. Fuzzy generalized weak contraction and its application to Fredholm non-linear integral equation in fuzzy metric space. The Journal of Analysis, 29, pp.619-632. Available at: https://doi.org/10.1007/s41478-020-00270-w

Jain, Sho., Jain, Shi. & Jain, L.B. 2009. Compatible mappings of type (β) and weak compatibility in fuzzy metric space. Mathematica Bohemica, 134(2), pp.151-164. Available at: https://doi.org/10.21136/MB.2009.140650

Karapinar, E. & Agarwal, R.P. 2019. Interpolative Rus-Reich-Ćirić type contraction via simulation functions. Analele ştiinţifice ale Universităţii ”Ovidius” Constanţa. Seria Matematică, 27(3), pp.137-152. Available at: https://doi.org/10.2478/auom-2019-0038

Kramosil, I. & Michalek, J. 1975. Fuzzy metric and statistical metric spaces. Kybernetica, 11(5), pp.336-344 [online]. Available at: https://dml.cz/handle/10338.dmlcz/125556 [Accessed: 25 August 2022].

Mihet, D. 2008. Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), pp.739-744. Available at: https://doi.org/10.1016/j.fss.2007.07.006

Mihet, D. 2010. A class of contractions in fuzzy metric spaces. Fuzzy Sets and Systems, 161(8), pp.1131-1137. Available at: https://doi.org/10.1016/j.fss.2009.09.018

Rhoades, B.E. 2001. Some theorems on weakly contractive maps. Nonlinear Analysis: Theory, Methods & Applicationss, 47(4), pp.2683-2693. Available at: https://doi.org/10.1016/S0362-546X(01)00388-1

Saha, P., Choudhury, B.S. & Das, P. 2016. Weak Coupled Coincidence Point Results Having a Partially Ordering in Fuzzy Metric Spaces. Fuzzy Information and Engineering, 8(2), pp.199-216. Available at: https://doi.org/10.1016/j.fiae.2016.06.005

Schweizer, B. & Sklar, A. 1983. Probabilistic Metric Spaces. Mineola, New York: Dover Publications. ISBN: 0-486-44514-3.

Tirado, P.P. 2012. Contraction mappings in fuzzy quasi-metric spaces and [0,1]-fuzzy posets. Fixed Point Theory, 13(1), pp.273-283 [online]. Available at: http://hdl.handle.net/10251/56871 [Accessed: 25 August 2022].

Wardowski, D. 2013. Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 222, pp.108-114. Available at: https://doi.org/10.1016/j.fss.2013.01.012

Zadeh, L.A. 1965. Fuzzy Sets. Information and Control, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X

Zheng, D. & Wang, P. 2019. Meir-Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, pp.120-128. Available at: https://doi.org/10.1016/j.fss.2018.08.014

Published
2022/10/14
Section
Original Scientific Papers