Supersymmetry

  • Nicola Fabiano University of Belgrade, ”Vinča” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Belgrade, Republic of Serbia https://orcid.org/0000-0003-1645-2071
Keywords: supersymmetry, minimal supersymmetric standard model

Abstract


Introduction/purpose: Supersymmetry is a symmetry of the Lagrangian that goes beyond Lie groups. It allows the exchange of bosons and fermions. The most important model is the Minimal Supersymmetric Standard Model, or MSSM.

Methods: Supercharge algebra, superfields, Grassmann numbers, and the Berezin integral.

Results: Supersymmetric transformations are global, i.e., they do not depend on spacetime coordinates. In the case of Supergravity, they are local.

Conclusion: Supersymmetric models, and MSSM in particular, could de- scribe particle physics better than the Standard Model.

References

Berezin, F.A. 1966. The Method of Second Quantization, 1st edition. New York, London: Academic press. ISBN-13: 978-0120894505.

Fabiano, N. 2022. Anomalies in quantum field theories. Vojnotehnički glasnik/Military Technical Courier, 71(1), pp.100-112. Available at: https://doi.org/10.5937/vojtehg71-38164.

Fabiano, N. 2021. Quantum electrodynamics divergencies. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.656-675. Available at: https://doi.org/10.5937/vojtehg69-30366.

Fayet, P. 1975. Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino. Nuclear Physics B, 90, pp.104-124. Available at: https://doi.org/10.1016/0550-3213(75)90636-7.

Fayet, P. 1977. Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Physics Letters B, 69(4), pp.489-494. Available at: https://doi.org/10.1016/0370-2693(77)90852-8.

Fayet, P. 1976. Supersymmetry and weak, electromagnetic and strong interactions. Physics Letters B, 64(2), pp.159-162. Available at: https://doi.org/10.1016/0370-2693(76)90319-1.

Fayet, P. & Ferrara, S. 1977. Supersymmetry. Physics Reports, 32(5), pp.249- 334. Available at: https://doi.org/10.1016/0370-1573(77)90066-7.

Gervais, J.-L. & Sakita, B. 1971. Field theory interpretation of supergauges in dual models. Nuclear Physics B, 34(2), pp.632-639. Available at: https://doi.org/10.1016/0550-3213(71)90351-8.

Gol’fand, Yu.A. & Likhtman, E.P. 1971. Extension of the algebra of the Poincare group generators and violation of P invariance. JETP Letters, 13(8), pp.452-455 (in Russian) [online]. Available at: http://jetpletters.ru/ps/717/article_11110.sht ml [Accessed: 20 September 2022]. (In the original: Гольфанд Ю.А. и Лихтман Е.П. 1971. Расширение алгебры генераторов группы Пуанкаре и нарушение Р-инвериантности. Письма в ЖЭТФ, 13(8), стр.452-455 [онлайн]. Доступно на: http://jetpletters.ru/ps/717/article_11110.shtml [Дата обращения: 20 Сентябрь 2022].)

Gol’fand, Yu.A. & Likhtman, E.P. 1989. Extension of the algebra of Poincaré group generators and violation of p invariance. In: Salam, A. & Sezgin, E. (Eds.) Supergravities in Diverse Dimensions Commentary and Reprints (In 2 Volumes). Singapore: World Scientific. Available at: https://doi.org/10.1142/9789814542340_0001.

Grassmann, H. 1844. Die Lineale Ausdehnungslehre – Ein neuer Zweig der Mathematik (in German). Leipzig: Verlag von Otto Wigand [online]. Available at: https://gdz.sub.uni-goettingen.de/id/PPN534901565 [Accessed: 20 September 2022].

Kähler, E. 1933. Über eine bemerkenswerte Hermitesche Metrik. Abh.Math.Semin.Univ.Hambg., 9, pp.173-186. Available at: https://doi.org/10.1007/BF02940642.

Nath, P. & Arnowitt, R. 1975. Generalized super-gauge symmetry as a new framework for unified gauge theories. Physics Letters B, 56(2), pp.177-180. Avail- able at: https://doi.org/10.1016/0370-2693(75)90297-X.

Ramond, P. 1971. Dual Theory for Free Fermions. Physical Review D, 3(10), pp.2415-2418. Available at: https://doi.org/10.1103/PhysRevD.3.2415.

Volkov, D.V. & Akulov, V.P. 1972. Possible Universal Neutrino Interaction. JETP Letters, 16(11), pp.438-440 [online]. Available at: http://jetpletters.ru/ps/1766/article_26864.shtml [Accessed: 20 September 2022].

Volkov, D.V. & Akulov, V.P. 1973. Is the neutrino a goldstone particle? Physics Letters B, 46(1), pp.109-110. Available at: https://doi.org/10.1016/0370-2693(73)90490-5.

Volkov, D.V. & Akulov, V.P. 1974. Goldstone fields with a spin one half. Teor. Mat. Fiz., 18(1), pp.39-50 (in Russian).

Volkov, D.V. & Soroka, V.A. 1973. Higgs effect for Goldstone particles with spin 1/2. JETP Letters, 18(8), pp.529-532 [online]. Available at: http://jetpletters.ru/ps/1568/article_24038.shtml [Accessed: 20 September 2022].

Wess, J. & Zumino, B. 1974. Supergauge transformations in four dimensions. Nuclear Physics B, 70(1), pp.39-50. Available at: https://doi.org/10.1016/0550-3213(74)90355-1.

 

Published
2023/03/27
Section
Review Papers