Certain integrals involving generalized Mittag-Leffler type functions
Abstract
Introduction/purpose: Certain integrals involving the generalized Mittag-Leffler function with different types of polynomials are established.
Methods: The properties of the generalized Mittag-Leffler function are used in conjunction with different kinds of polynomials such as Jacobi, Legendre, and Hermite in order to evaluate their integrals.
Results: Some integral formulae involving the Legendre function, the Bessel Maitland function and the generalized hypergeometric functions are derived.
Conclusions: The results obtained here are general in nature and could be useful to establish further integral formulae involving other kinds of polynomials.
References
Dorrego, G.A. & Cerutti R.A. 2012. The k-Mittag-Leffler function. International Journal of Contemporary Mathematics Sciences, 7(15), pp.705-716 [online]. Available at: http://www.m-hikari.com/ijcms/ijcms-2012/13-16-2012/ceruttiIJCMS13-16-2012-2.pdf [Accessed: 20 August 2022].
Erdelyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F.G. 1953a. Higher transcendental functions Volume 1 (Bateman Manuscript Project) [online]. New York, Toronto and London: McGraw-Hill Book Company. Available at: https://authors.library.caltech.edu/43491/19/Volume%201.pdf [Accessed: 20 August 2022].
Erdelyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F.G. 1953b. Higher transcendental functions Volume 3 (Bateman Manuscript Project) [online]. New York, Toronto and London: McGraw-Hill Book Company. Available at: https://authors.library.caltech.edu/43491/10/Volume%203.pdf [Accessed: 20 August 2022].
Faraj, A.W., Salim, T.O., Sadek, S. & Ismail, J. 2013. Generalized Mittag-effler Function Associated with Weyl Fractional Calculus Operators. Journal of Mathematics, 2013(art ID:821762). Available at: https://doi.org/10.1155/2013/821762
Gehlot, K.S. 2021. The generalized k-Mittag-Leffler function. International Journal of Contemporary Mathematical Sciences, 7, pp.2213-2219.
Haq, S., Khan, A.H. & Nisar, K.S. 2019. A study of new class of integrals associated with generalized Struve function and polynomials. Communications of the Korean Mathematical Society, 34(1), pp.169-183. Available at: https://doi.org/10.4134/CKMS.c170490
Khan, M.A. & Ahmed, S. 2012. Fractional calculus operators involving generalized Mittag-Leffler function. World Applied Programming, 2(12), pp.492-499.
McBride, A.C. 1995. V. Kiryakova Generalized fractional calculus and applications (Pitman Research Notes in Mathematics Vol. 301, Longman1994), 388 pp., 0 582 21977 9, £39. Proceedings of the Edinburgh Mathematical Society, 38(1), pp.189-190. Available at: https://doi.org/10.1017/S0013091500006325
Mittag-Leffler, G.M. 1903. Sur la nouvelle fonction Eα(x). CR Acad. Sci. Paris, 137(2), pp.554-558.
Nadir, A., Khan, A. & Kalim, M. 2014. Integral transforms of the generalized Mittag-Leffler function. Applied Mathematical Science, 8(103), pp.5145-5154. Available at: https://doi.org/10.12988/ams.2014.43218
Prabhakar, T.R. 1971. A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Mathematical Journal, 19(1), pp.7-15 [online]. Available at: https://ynu.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=6514&item_no=1&page_id=15&block_id=22 [Accessed: 20 August 2022].
Prajapati, J.C., Jana, R.K., Saxena, R.K. & Shukla, A.K. 2013. Some results on the generalized Mittag-Leffler function operator. Journal of Inequalities and Applications, 2013(art.number:33). Available at: https://doi.org/10.1186/1029-242X-2013-33
Prajapati, J.C. & Shukla, A.K., 2012. Decomposition of Generalized Mittag-Leffler Function and Its Properties. Advances in Pure Mathematics, 2(1), p.8-14. Available at: https://doi.org//10.4236/apm.2012.21003
Purohit, S.D., Kalla, S.L. & Suthar, D.L. 2011. Fractional integral operators and the multiindex Mittag-Leffler functions. SCIENTIA Series A: Mathematical Sciences, 21, pp.87–96 [online]. Available at: http://scientia.mat.utfsm.cl/archivos/vol21/vol21art9.pdf [Accessed: 20 August 2022].
Rainville, E.D. 1960. Special functions (Vol. 5). New York: The Macmillan Company.
Salim, T.O. & Faraj, A.W. 2012. A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. Journal of Fractional Calculus and Applications, 3(5), pp.1-13 [online]. Available at: https://www.naturalspublishing.com/download.asp?ArtcID=1893 [Accessed: 20 August 2022].
Saxena, V.P. 2008. The I-function. New Delhi: Anamaya publisher.
Saxena, R.K., Pogany, T.K., Ram, J. & Daiya, J. 2011. Dirichlet Averages of Generalized Multi-index Mittag-Leffler Functions. Armenian Journal of Mathematics, 3(4), pp.174-187 [online]. Available at: http://armjmath.sci.am/index.php/ajm/article/view/79 [Accessed: 20 August 2022].
Shukla A.K. & Prajapati J.C. 2007. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications, 336(2), pp.797-811. Available at: https://doi.org/10.1016/j.jmaa.2007.03.018
Singh, D.K. & Rawat, R.A.H.U.L. 2013. Integrals involving generalized Mittag-Leffler function. Journal of Fractional Calculus and Applications, 4(2), pp.234-244 [online]. Available at: http://math-frac.org/Journals/JFCA/Vol4(2)_July_2013/Vol4(2)_Papers/07_Vol.%204(2)%20July%202013,%20No.%207,%20pp.%20234-244..pdf [Accessed: 20 August 2022].
Srivastava, H.M. & Manocha, H.L. 1984. A Treatise on Generating Functions. New York: Hasted Press.
Srivastava, H.M. & Tomovski, Ž. 2009. Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Applied Mathematics and Computation, 211(1), pp.198-210. Available at: https://doi.org/10.1016/j.amc.2009.01.055
Wiman, A., 1905. Über den Fundamentalsatz in der Teorie der Funktionen Eυ(x). Acta Mathematica, 29, pp.191-201. Available at: https://doi.org/10.1007/BF02403202
Wright, E.M. 1935a. The Asymptotic Expansion of the Generalized Bessel Function. Proceedings of the London Mathematical Society, s2-38(1), pp.257-270. Available at: https://doi.org/10.1112/plms/s2-38.1.257
Wright, E.M. 1935b. The Asymptotic Expansion of the Generalized Hypergeometric Function. Journal of the London Mathematical Society, s1-10(4), pp.286-293. Available at: https://doi.org/10.1112/jlms/s1-10.40.286
Copyright (c) 2022 Sirazul Haq, Maggie Aphane, Mohammad Saeed Khan, Nikola Fabiano
This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).