On the spectral radius of VDB graph matrices

Keywords: Vertex-degree-based matrix, VDB matrix, vertex-degree-based graph invariant, VDB graph invariant, spectral radius (of matrix)

Abstract


Introduction/purpose: Vertex-degree-based (VDB) graph matrices form a special class of matrices, corresponding to the currently much investigated vertex-degree-based (VDB) graph invariants. Some spectral properties of these matrices are investigated.

Results: Generally valid sharp lower and upper bounds are established for the spectral radius of any VDB matrix. The equality cases are characterized. Several earlier published results are shown to be special cases of the presently reported bounds.

Conclusion: The results of the paper contribute to the general spectral theory of VDB matrices, as well as to the general theory of VDB graph invariants.

Author Biography

Ivan Gutman, University of Kragujevac, Faculty of Science, Kragujevac, Republic of Serbia

References

Bondy, J.A. & Murty, U.S.R. 1976. Graph Theory with Applications. New York: Macmillan Press. ISBN: 0-444-19451-7.

Brualdi, R.A. & Cvetković, D. 2008. A Combinatorial Approach to Matrix Theory and Its Applications. New York: Chapman & Hall. Available at. https://doi.org/10.1201/9781420082241. ISBN: 9780429144677.

Cvetković, D., Rowlinson, P. & Simić, K. 2010. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press. ISBN: 9780521134088.

Gutman, I. 2013. Degree-based topological indices. Croatica Chemica Acta, 86(4), pp.351-361. Available at: https://doi.org/10.5562/cca2294

Gutman, I. 2021. Spectrum and elergy of the Sombor matrix. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.551-561. Available at: https://doi.org/10.5937/vojtehg69-31995

Harary, F. 1969. Graph Theory. Boca Raton: CRC Press. Available at: https://doi.org/10.1201/9780429493768. ISBN: 9780429493768

Kulli, V.R. 2020. Graph indices. In: Pal, M., Samanta, S. & Pal, A. (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, pp.66-91. Hershey, USA: IGI Global. Available at: https://doi.org/10.4018/978-1-5225-9380-5.ch003

Li, F., Ye, Q., Broersma, H., Ye, R. & Zhang, X. 2021. Extremality of VDB topological indices over f–benzenoids with given order. Applied Mathematics and Computation, 393(art.number:125757). Available at: https://doi.org/10.1016/j.amc.2020.125757

Lin, Z., Zhou, T. & Miao, L. 2023. On the spectral radius, energy and Estrada index of the Sombor matrix of graphs. Transactions on Combinatorics, 12, pp.191-205.

Monsalve, J. & Rada, J. 2022. Energy of a digraph with respect to a VDB topological index. Special Matrices, 10(1), pp.417-426. Available at: https://doi.org/10.1515/spma-2022-0171

Rada, J. 2014. The linear chain as an extremal value of VDB topological indices of polyomino chains. Applied Mathematical Sciences, 8(103), pp.5133-5143. Available at: https://doi.org/10.12988/ams.2014.46507

Stevanović, D. 2015. Spectral Radius of Graphs. Cambridge, Massachusetts: Academic Press. ISBN: 9780128020685.

Todeschini, R. & Consonni, V. 2009. Molecular Descriptors for Chemoinformatics. Weinheim: Wiley-VCH. ISBN: 978-3-527-31852-0.

 

 

Published
2023/01/30
Section
Original Scientific Papers