Contribution to the research of oscillatory loads of sprung and unsprung masses in order to create conditions for laboratory tests of heavy motor vehicles

Keywords: motor vehicle, sprung and unsprung masses, oscillatory loads, laboratory tests

Abstract


Introduction/purpose: Motor vehicles are complex dynamic systems due to spatial displacements, changes in the characteristics of components during their lifetime, a large number of influences and disturbances, the appearance of backlash, friction, hysteresis, etc. The aforementioned dynamic phenomena, especially vibrations, cause driver and passenger fatigue, reduce the lifetime of the vehicle and its systems, etc.

Methods: In general, the movement of vehicles is carried out on uneven roads and curvilinear paths in the road. Not only do oscillatory movements cause material fatigue of vehicle parts, but they also have a negative effect on people's health. That is why special attention must be paid to the coordination of the mutual movement of the subsystems, and in particular, the vehicle suspension system, even at the stage of the motor vehicle design. For these purposes, theoretical, experimental or combined methods can be used. Therefore, it is very useful to have the experimental results of the oscillations of the vehicle subsystem in operating conditions, so the aim of this work was to use the movement of the 4x4 drive FAP 1118 vehicle in operating conditions (due to higher speeds - in road conditions) to define the conditions for testing oscillatory loads in laboratory conditions. 

Results:This is made possible by registering and identifying statistical parameters of registered quantities.

Conclusion: Based on the measured data, the research can be programmed on shakers in laboratory conditions, and, at the same time,  the size to be reproduced can be chosen as well.

 

References

Abe, M. 2009. Vehicle Handling Dynamics: Theory and Application, 1st Edition. Oxford, UK: Butterworth-Heinemann. ISBN: 9780080961811.

Bendat, J.S. & Piersol, A.G. 2000. Random Data: Analysis and Measurement Procedures, 4th Edition. Hoboken, NJ: John Wiley & Sons. ISBN: 978-0-470-24877-5.

Cox, D.R. & Reid, N. 2000. The Theory of the Design of Experiments. Chapman & Hall/CRC. ISBN: 1-58488-195-X.

Demić, M. 1997. Optimizacija oscilatornih sistema motornih vozila. Kragujevac, Serbia: Mašinski fakultet (in Serbian). ISBN: 86-81745-40-9.

Demić, M. & Diligenski, Đ. 2003. The Road Surface Profile Investigation Perspective. In: The 30' Session - „Modern technologies in XXI Century”, Bucharest, Romania, pp.35-42.

Demić, M. 2006. Dinamičke pobude automobila. Belgrade, Serbia:  Institut za nuklearne nauke „Vinča”, Centra za motore i vozila (in Serbian). ISBN: 86-7306-077-X.

Demić, M. 2008. Kibernetski sistem: čovek - vozilo - okruženje. Kragujevac, Serbia: Centar za naučna istraživanja SANU i Univerziteta u Kragujevcu (in Serbian). ISBN: 978-86-81037-21-8.

Demić, M., Đurić, A., Grkić, A., Drakulić, M. & Muždeka, S. 2022. A contribution to investigation of oscillatory loads of driving axles in order to create conditions for laboratory tests of trucks. In: IOP Conference Series: Materials Science and Engineering, Volume 1271, IX International Congress Motor Vehicles and Motors (MVM 2022), Kragujevac, Serbia, October 13-14. Available at: https://doi.org/10.1088/1757-899X/1271/1/012001.

Demić, M., Toljski, V. & Spentzas, K. 2001. A contribution to investigation of the tire nonuniformity influence to vehicle steering system vibration. Vojnotehnički glasnik/Military Technical Courier, 49(3), pp.293-300 (in Serbian). Available at: https://doi.org/10.5937/vojtehg0103293D.

Ellis, J.R. 1969. Vehicle Dynamics. Business Books. ISBN 13: 9780220992026.

Fiala, E. 2006. Mensch und Fahrzeug: Fahrzeugführung und sanfte Technik, ATZ/MTZ Fachbuch. Vieweg+Teubner Verlag (in German). ISBN-13: 978-3834800169.

Genta, A. 1997. Motor Vehicle Dynamics: Modeling and Simulation (Advances in Mathematics for Applied Sciences). Singapore: World Scientific Publishing Company. ISBN-13: 978-9810229115.

Gillespie, T.D. 1992. Fundamentals of Vehicle Dynamics. Warrendale, PA, USA: SAE International. Available at: https://doi.org/10.4271/R-114.

Grkić, A.R. 2015. Energy potential of friction brake. Ph.D. thesis. Belgrade, Serbia: University of Belgrade, Faculty of Mechanical Engineering (in Serbian) [online]. Available at: https://nardus.mpn.gov.rs/handle/123456789/5278 [Accessed: 02 March 2023].

Hachaturov, A.A. 1976. Dinamika sistemy doroga - shina - avtomobil' – voditel'. Moscow: Mashinostroenie (in Rusian). (In the original: Хачатуров, А.А. 1976. Динамика системы дорога - шина - автомобиль – водитель. Москва: Машиностроение).

-ISO. 1995. ISO 8608:1995 Mechanical vibration — Road surface profiles — Reporting of measured data [online]. Available at: https://www.iso.org/standard/15913.html [Accessed: 03 March 2023].

Jovanović, S. & Đurić, A. 2009. Analysis of risks from crew exposure to vibrations in military transport. Vojnotehnički glasnik/Military Technical Courier, 57(4), pp.93-107 (in Serbian). Available at: https://doi.org/10.5937/vojtehg0904093J.

Milliken, W.F. & Milliken, D.L. 1994. Race Car Vehicle Dynamics. Warrendale, PA, USA: SAE International. ISBN: 978-1-56091-526-3.

Mitschke, M. 1972. Dynamik der Kraftfahrzeuge. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-662-11585-5.

Muždeka, S. 2008. Predviđanje funkcionalnih karakteristika planetarnih prenosnika snage. Ph.D. thesis. Belgrade, Serbia: University of Belgrade, Faculty of Mechanical Engineering (in Serbian).

O`Connor, P.D.T & Kleyner, A. 2012. Practical Reliability Engineering, Fifth Edition. Hoboken, NJ: John Wiley & Sons, Ltd. ISBN: 9780470979815.

Rajamani, R. 2006. Vehicle Dynamics and Control. New York, NY, USA: Springer. ISBN: 9780387263960.

Simić, D. 1980. Dinamika motornih vozila. Belgrade, Serbia: Naučna knjiga (in Serbian).

Vukadinović, S. 1973. Elementi teorije verovatnoće i statistike. Belgrade, Serbia: Privredni pregled (in Serbian).

Published
2023/06/08
Section
Original Scientific Papers