Mechanical properties and microstructure of vacuum plasma sprayed Cr3C2 – 25(Ni20Cr) coatings
Abstract
This paper analyzes vacuum plasma spray VPS - Cr3C2 - 25(Ni20Cr) coatings. Commercial powder marked Sulzer Metco Woka 7205 is used. The powder is deposited with a plasma gun F4 at a distance of 340 mm from the substrate. The main objective of the study was to eliminate, at the reduced pressure of inert gas Ar, the degradation of primary Cr3C2 carbide into Cr23C6 carbide which significantly reduces the microhardness and mechanical properties of the coating. The coating is deposited with a thickness of 100 - 120 µm on a steel substrate. The microhardness of the coating was tested by HV0.3. The microhardness values were in the range of 1248 - 1342 HV0.3. The bond strength of the coating was tested by tension. It was found that the bond strength between the substrate and the coating has a value of 89 MPa. The microstructure of the coating was tested by the light microscopy technique. The structure of the coating consists of an NiCr alloy base with a dominant primary Cr3C2 carbide phase. In addition to the Cr3C2 phase, the Cr7C3 phase is also present. The coating etching was done with the reagent 1HNO3 : 4HCl : 4H2O that primarily dissolves nickel to enable the distribution of the carbide phase to be clearly seen in the coating. Etching the coating with this reagent revealed the presence of the largely undegraded primary Cr3C2 carbide phase which provides high hardness values to the coating.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).