Evaluations of the apparent activation energy distribution function for the non-isothermal reduction of nickel oxide nano-powders

  • Bojan Ž. Janković Faculty of Physical Chemistry, Department of the Dynamics and Structure of Matter, University of Belgrade
  • Marija M. Janković
Keywords: nickel oxide, non-isothermal reduction, apparent activation energy, density distribution functions, true compensation effect,

Abstract


The differential conversion curves of the non-isothermal NiO reduction process by hydrogen are fitted by the Weibull (non-isothermal) probability density function (Wpdf), in a wide range of the degree of conversion (α = 0.06 - 0.96). It was established that the Weibull distribution parameters (β and η) show the different dependences on the heating rate of the system (vh) (shape parameter (β) – linear form and scale parameter (η) – exponential form). Model independent values of the apparent activation energy were calculated using the Friedman’s isoconversional method. It was found that the calculated apparent activation energy depends on the degree of conversion, α, and it shows a constant value in the range of the degree of conversion 0.20 ≤ α ≤ 0.60 (Ea = 90.8 kJ mol-1). Knowing the Weibull distribution function of reaction times, it is possible to determine the density distribution function of apparent activation energies at different heating rates. It was established that the changes of the symmetry of density distribution functions may be an indication for deviations from the simple crystallization kinetics as expressed by the Johnson-Mehl-Avrami (JMA) model, and this behaviour is probably due to a more complex transformation process such as a process described by the two-parameter autocatalytic Šesták-Berggren model.

 

References

Agrawal, R.K. 1986. On the compensation effect. Journal of Thermal Analysis, 31(1), p.73-86. doi:10.1007/BF01913888

Anthony, D.B., & Howard, J.B. 1976. Coal devolatilization and hydrogastification. AIChE Journal, 22(4), p.625-656. doi:10.1002/aic.690220403

Avrami, M. 1939. . J. Chem. Phys., 7, p.1103.

Avrami, M. 1940. . J. Chem. Phys., 8, p.212.

Avrami, M. 1941. Granulation, phase change, and microstructure: Kinetics of phase change. III. Journal of Chemical Physics, 9(2), p.177. doi:10.1063/1.1750872

Bandrowski, J., Bickling, C.R., Yang, K.H., & Hougen, O.A. 1962. . Chemical Engineering Science, 17, p.379.

Benton, A.F., & Emmett, P.H. 1924. . Journal of the American Chemical Society, 46(12), p.2728. doi:10.1021/ja01677a018

Braun, R.L., & Burnham, A.K. 1987. . Energy Fuels, 1, p.153.

Budrugeac, P., & Segal, E. 1995. . ICTAC News, 28, p.33.

Burnham, A.K. 2005. . Chem. Eng. J, 108, sp.47.

Burnham, A.K., & Braun, R.L. 1999. . Energy Fuels, 13, p.1.

Burnham, A.K., Weese, R.K., & Weeks, B.L. 2004. . J. Phys. Chem. B, 108, p.19432.

Campbell, J.H., Gallegos, G., & Gregg, M.L. 1980. . Fuel, 59, p.727.

Cantú, R.G.A., Mcewen, J.S., & Gaspard, P. 2011. . Phys. Rev. E, 83, p.1.

Chen, D., Gao, X., & Dollimore, D. 1993. . Thermochim. Acta, 215, p.109.

Delmon, B. 1997. Handbook of Heterogeneous Catalysis. New York: Wiley-VCH.

Delmon, B. 1969. Introduction á la cinétique hétérogéne. Paris: Technip. ch. 11.

Freund, H. 1999. . Faraday Discussions, 144, pp.1-31. doi:10.1039/a907182b

Friedman, H.L. 1963. . J. Polym. Sci. Part C, 6, p.183.

Furstenau, R.P., Mcdougall, G., & Langel, M.A. 1985. . Surf. Sci., 150, p.55.

Galwey, A.K. 1977. . Adv. Catal, 26, p.247.

Henderson, D.W. 1979. . J. Non-Cryst. Solids, 30, p..301.

Henrich, V., & Cox, P. 1994. Surface science of metal oxides. Cambridge: Cambridge University Press.

Janković, B., Adnađević, B., & Mentus, S. 2008. . Chem. Eng. Sci., 63, p.567.

Janković, B., Adnadević, B., & Mentus, S. 2007. The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method. Thermochim. Acta , 456(1), p.48-55. doi:10.1016/j.tca.2007.01.033

Johnson, W.A., & Mehl, R.F. 1939. . Trans. Amer. Inst. Min. Metal. Petro. Eng, 135, p.416.

Kissinger, H.E. 1956. . J Res. Nat. Bur. Standards, 57, p.217.

Kissinger, H.E. 1957. Reaction kinetics in differential thermal analysis. Anal. Chem. , 29, p.1702-6. doi:10.1021/ac60131a045

Klarić, I., Roje, U., & Kovačić, T. 1995. Kinetics of isothermal thermogravimetrical degradation of PVC/ABS blends. Journal of Thermal Analysis, 45(6), p.1373-1380. doi:10.1007/BF02547431

Koga, N. 1994. . Thermochim. Acta, 244, p.1.

Koga, Y., & Harrison, L.G. 1984. Comprehensive Chemical Kinetics. Amsterdam: Elsevier.

Kolar-Anić, Lj., Veljković, S., Kapor, S., & Dubljević, B. 1975. . J. Chem. Phys., 63, p.663.

Kolar-Anić, Lj., & Veljković, S. 1975. . J. Chem. Phys., 63, p.669.

Kung, H.H. 1989. Transition Metal Oxides: The surface Chemistry and Catalysis. New York: Elsevier.

Lakshmanan, C.C., Bennett, M.L., & White, N. 1991. . Energy Fuels, 5, p.110.

Lakshmanan, C.C., & White, N. 1994. . Energy Fuels, 8, p.1158.

Langel, M.A. 1985. . Surf. Sci., 164, p.543.

Lescop, J.P., Jay, B., & Fanjoux, G. 2004. . Surf. Sci., 548, p.83.

Lin, C.K., & Berndt, C.C. 1995. Statistical analysis of microhardness variations in thermal spray coatings. Journal of Materials Science, 30(1), pp.111-117. doi:10.1007/BF00352139

Mcguinness, M.J., Donskoi, E., & McElwain, D.L.S. 1999. . Appl. Math. Lett., 12, p.27.

Mentuš, S., Majstorović, D.M., Tomić, B.S., & Dimitrijević, R.Z. 2005. Reduction of NiO-WO3 oxide mixtures synthesized by gel-combustion technique: A route to Ni-W alloys. Mater. Sci. Forum , 494, pp.345-350. doi:10.4028/0-87849-971-7.345

Miura, K., & Maki, T. 1998. . Energy Fuels, 12, p.864.

Moriyama, J., & Yamaguchi, A. 1964. . Nippon Kinzoku Gakkaishi, 28, p.831.

Plait, A. 1962. . Ind. Qual. Contro, 19, p.17.

Richardson, J.T., Lei, M., Turk, B., Forster, K., & Twigg, M.V. 1994. . Appl. Catal. A, 110, p.217.

Richardson, J.T., Scates, R., & Twigg, M.V. 2003. X-ray diffraction study of nickel oxide reduction by hydrogen. Applied Catalysis A: General, 246(1), pp.137-150. doi:10.1016/S0926-860X(02)00669-5

Rodriguez, J.A., Hanson, J.C., Frenkel, A.I., Kim, J.Y., & Pérez, M. 2002. Experimental and theoretical studies on the reaction of H(2) with NiO: Role of O vacancies and mechanism for oxide reduction. J Am Chem Soc, 124(2), pp.346-54. pmid:11782187. doi:10.1021/ja0121080

Sestak, J., & Berggren, G. 1971. Kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta, 3, p.1. doi:10.1016/0040-6031(71)85051-7

Shih, S.M., & Sohn, H.Y. 1980. . Ind. Eng. Chem. Process Des. Dev., 19, p.420.

Staszczuk, P., Sternik, D., & Kutarov, V.V. 2002. . Journal of Thermal Analysis and Calorimetry, 69(1), pp.23-36. doi:10.1023/A:1019973303894

Stern, A.C., Boubel, R.W., Turner, D.B., & Fox, D.L. 1984. Fundamentals of Air Pollution, 2nd ed.Orlando, FL: Academic Press.

Utigard, T.A., Wu, M., Plascencia, G., & Marin, T. 2005. . Chem. Eng. Sci., 60, p.2061.

Vyazovkin, S.V., Goryachko, V., & Lesnikovich, A.I. 1992. . Thermochim. Acta, 197, p.41.

Vyazovkin, S., & Linert, W. 1995. . Int. Rev. Phys. Chem., 14, p.355.

Vyazovkin, S., & Linert, W. 1995. . Chem. Phys., 193, p.109.

Vyazovkin, S., & Wight, C.A. 1999. . Thermochim. Acta, 340-341, p.53.

Vyazovkin, S., & Wight, C.A. 1997. Kinetics in solids. Annual review of physical chemistry, 48, pp.125-49.

pmid:15012442. doi:10.1146/annurev.physchem.48.1.125

Weibull, W. 1951. A statistical distribution function of wide applicability. ASME Journal of Applied Mechanics, 18, pp.293-297.

Wu, Y., He, Y., Wu, T., Chen, T., Weng, W., & Wan, H. 2007. . Mater. Lett., 61, p.3174.

Yagi, S., & Kunii, D. 1955. . . U: Proceedings of the 5th International Symposium on Combustion. New York: Reinhold.

Published
2014/02/26
Section
Review Papers