EEG signal ANFIS classification for motor imagery for different joints of the same limb

  • Ihab A. Satam Obuda University, Doctoral School on Safety and Security Sciences, Budapest, Hungary; Northern Technical University, Alhawija Technical Institute, Electronic Techniques Department, Hawija, Republic of Iraq https://orcid.org/0000-0002-9749-0944
Keywords: electroencephalography (EEG), classification, ANFIS, wavelet transform, feature extraction, BCI

Abstract


Introduction: The experimental area of brain-computer interfaces (BCIs) is expanding to include movement actions, which play a crucial part in deciphering cognitive processes. Without the need for any kind of exterior stimulation, motor imagining (MI) can be used as a powerful model for brain-computer interfaces (BCIs). A natural method of operating exterior devices is to imagine moving various joints in the same arm. These envisioned motions have similar spatial images in the motor brain, making it difficult to differentiate MI of various joints of the same leg based on EEG data.

Method: A pre-existing data collection of 25 participants was utilized in this study. The participants visualized using their right limbs to carry out three different activities: visualize yourself manipulating your right hand, visualize bending your right arm, and close your eyes while you relax. To assign categories to these impulses, we turned to the adaptive neuro-fuzzy reasoning system.

Results: The average level of accuracy was 90%.

Conclusion: The findings demonstrate that this technique is crucial for correctly categorizing EEG data. The data collection used in this investigation consists of EEG measurements of the same limb used in muscular imaging. The new categorization method will be applied to these signals to draw conclusions.

References

Amin, H.U., Mumtaz, W., Subhani, A.R., Saad, M.N.M., & Malik, A.S. 2017. Classification of EEG Signals Based on Pattern Recognition Approach. Frontiers in Computational Neuroscience, 11, art.number:103, pp.1-12. Available at: https://doi.org/10.3389/fncom.2017.00103.

Dwi Saputro, I.R., Maryati, N.D., Solihati, S.R., Wijayanto, I., Hadiyoso, S. & Patmasari, R. 2019. Seizure Type Classification on EEG Signal using Support Vector Machine. Journal of Physics: Conference Series, 1201, art.number:012065. Available at: https://doi.org/10.1088/1742-6596/1201/1/012065.

Hashmi, A., Alam Khan, B. & Farooq, O. 2021. A Comparative Study of Machine Learning Algorithms for EEG Signal Classification. Signal & Image Processing : An International Journal (SIPIJ), 12(6), pp.37-50. Available at: https://doi.org/10.5121/sipij.2021.12603.

Hindarto, H., Muntasa, A. & Sumarno, S. 2018. Feature Extraction ElectroEncephaloGram (EEG) using wavelet transform for cursor movement. IOP Conference Series: Materials Science and Engineering, 434, art.number: 012261. Available at: https://doi.org/10.1088/1757-899X/434/1/012261.

Ma, X., Qiu, S. & He, H. 2020. Multi-channel EEG recording during motor imagery of different joints from the same limb. Scientific Data, 7, art.number:191, pp.1-9. Available at: https://doi.org/10.1038/s41597-020-0535-2.

Najafi, T., Jaafar, R., Remli, R. & Wan Zaidi, W.A. 2022. A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy. Sensors, 22(19), art.number:7269. Available at: https://doi.org/10.3390/s22197269.

Nazi, Z., Al, Hossain, A.B.M.A. & Islam, M.M. 2021. Motor Imagery Eeg Classification Using Random Subspace Ensemble Network With Variable Length Features. International Journal Bioautomation, 25(1), pp.13-24. Available at: https://doi.org/10.7546/ijba.2021.25.1.000611.

Satam, I.A. 2021. Review Studying of the Latest Development of Prosthetic Limbs Technologies. International Journal of Scientific & Engineering Research, 12(12), pp.721-731 [online]. Available at: https://www.ijser.org/onlineResearchPaperViewer.aspx?Review-Studying-of-the-Latest-Development-of-Prosthetic-Limbs-Technologies.pdf [Accessed: 15 September 2023].

Smith, S.J.M. 2005. EEG in the diagnosis, classification, and management of patients with epilepsy. Journal of Neurology Neurosurgery and Psychiatry, 76(2). Available at: https://doi.org/10.1136/jnnp.2005.069245.

Stefenon, S.F., Freire, R.Z., dos Santos Coelho, L., Meyer, L.H., Grebogi, R.B., Buratto, W.G. & Nied, A. 2020. Electrical insulator fault forecasting based on a wavelet neuro-fuzzy system. Energies, 13(2), art.number:484. Available at: https://doi.org/10.3390/en13020484.

Thomas, J., Comoretto, L., Jin, J., Dauwels, J., Cash, S.S., & Westover, M. B. 2018. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, pp.3148-3151, July 18-21. Available at: https://doi.org/10.1109/EMBC.2018.8512930.

Wen, T., Du, Y., Pan, T., Huang, C. & Zhang, Z. 2021. A Deep Learning-Based Classification Method for Different Frequency EEG Data. Computational and Mathematical Methods in Medicine, 2021, art.ID:1972662. Available at: https://doi.org/10.1155/2021/1972662.

Zhou, D. & Li, X. 2020. Epilepsy EEG Signal Classification Algorithm Based on Improved RBF. Frontiers in Neuroscience, 14, pp.1-7. Available at: https://doi.org/10.3389/fnins.2020.00606.

Published
2024/03/05
Section
Original Scientific Papers