Fixed point results for β − F−weak contraction mappings in complete S-metric spaces

Keywords: fixed point, S-metric space, β − F−weak contraction, nonlinear integral equatin

Abstract


Introduction/purpose: This paper introduces the concept of β − F-weak contraction by using the concepts of F−weak contraction and α − ψ−contraction.

Methods: The use of the β − F-weak contraction proves some fixed points theorems in the framework of S−metric spaces.

Results: The obtained results on fixed points in S−metric spaces generalize some known results in the literature.

Conclusions: The β − F−weak contraction generalizes some important contraction types and examines the existence of a fixed point in S−metric spaces. The results are used to solve a non-linear Fredholm integral equation.

References

Alghamdi, M.A. & Karapinar, E. 2013. G − β − ψ contractive-type mappings and related fixed point theorems. Journal of Inequalities and Applications, art.number:70. Available at: https://doi.org/10.1186/1029-242X-2013-70.

Ćirić, Lj.B. 1974. A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), pp.267-273. Available at: https://doi.org/10.2307/2040075.

Dey, L.K., Kumam, P. & Senapati, T. 2019. Fixed point results concerning α − F− contraction mappings in metric spaces. Applied General Topology, 20(1), pp.81-95. Available at: https://doi.org/10.4995/agt.2019.9949.

Dung, N.V. & Hang, V.L. 2015. A Fixed Point Theorem for Generalized F-Contractions on Complete Metric Spaces. Vietnam Journal of Mathematics, 43(4), pp.743-753. Available at: https://doi.org/10.1007/s10013-015-0123-5.

Gopal, D., Abbas, M., Patel, D.K. & Vetro, C. 2016. Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation. Acta Mathematica Scientia, 36(3), pp.957-970. Available at: https://doi.org/10.1016/S0252-9602(16)30052-2.

Hardy, G.E. & Rogers, T.D. 1973. A Generalization of a Fixed Point Theorem of Reich. Canadian Mathematical Bulletin, 16(2), pp.201-206. Available at: https://doi.org/10.4153/CMB-1973-036-0.

Hieu, N.T., Ly, N.T. & Dung, N.V. 2015. A Generalization of Ćirić Quasi-Contractions for Maps on S-Metric Spaces. Thai Journal of Mathematics, 13(2), pp.369-380 [online]. Available at: https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/515/511 [Accessed: 7 February 2024].

Özgür, N.Y. & Taş, N. 2016. S Some Generalizations of Fixed-Point Theorems on S-Metric Spaces. In: Rassias, T. & Pardalos, P. (Eds.) Essays in Mathematics and its Applications, pp.229–261. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-31338-2_11.

Piri, H. & Kumam, P. 2014. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory and Applications, art.number:210. Available at: https://doi.org/10.1186/1687-1812-2014-210.

Piri, H. & Kumam, P. 2016. Wardowski type fixed point theorems in complete metric spaces. Fixed Point Theory and Applications, art.number:45. Available at: https://doi.org/10.1186/s13663-016-0529-0.

Ranjbar, G.K. & Samei, M.E. 2019. A generalization of fixed point theorems about F-contraction in particular S-metric spaces and characterization of quasi-contraction maps in b-metric spaces. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 81(2), pp.51-64 [online]. Available at: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full8bb_277361.pdf [Accessed: 7 February 2024].

Secelean, N.-A. 2013. Iterated function systems consisting of F-contractions. Fixed Point Theory and Applications, art.number:277. Available at: https://doi.org/10.1186/1687-1812-2013-277. 30

Sedghi, S., Shobe, N. & Aliouche, A. 2012. A generalization of fixed point theorems in S-metric spaces. Matematički vesnik, 64(3), pp.258-266 [online]. Available at: http://www.vesnik.math.rs/landing.php?p=mv123.cap&name=mv12309 [Accessed: 7 February 2024].

Sedghi, S. & Dung, N.V. 2014. Fixed point theorems on S-metric spaces. Matematički vesnik, 66(1), pp.113-124 [online]. Available at: http://www.vesnik.math.rs/landing.php?p=mv141.cap&name=mv14112 [Accessed: 7 February 2024].

Wardowski, D. 2012. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications, art.number:94. Available at: https://doi.org/10.1186/1687-1812-2012-94.

Wardowski, D. & Dung, N.V. 2014. Fixed points of F-weak contractions on complete metric spaces. Demonstratio Mathematica, 47(1), pp.146-155. Available at: https://doi.org/10.2478/dema-2014-0012.

Published
2024/03/05
Section
Original Scientific Papers