New approach of Lebesgue integral in revised fuzzy cone metric spaces via unique coupled fixed point theorems
Abstract
Introduction/purpose: This article introduces the concept of revised fuzzy cone contraction by using the concept of a traiangular conorm and Revised Fuzzy Cone contractive conditions.
Methods: This article established new Revised Fuzzy Cone Contraction (RFC-C) type unique coupled Fixed Point theorems (FP theorems) in revised fuzzy cone metric spaces (RFCMS) by using the triangular property of RFCMS.
Results: The obtained results on fixed points in revised fuzzy cone metric spaces generalize some known results in the litrature and present illustrative examples to support the main work.
Conclusion: The RFC contractive conditions generalize some important contraction types and examine the existence of a fixed point in revised fuzzy cone metric spaces. In addition, the Lebesgue integral type mapping is applied to get the existence result of a unique coupled fixed point in RFCMS to validate the main work.
References
Bhaskar, T.G. & Lakshmikantham, V. 2006. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis: Theory, Methods & Applications, 65(7), pp.1379-1393. Available at: https://doi.org/10.1016/j.na.2005.10.017.
Branciari, A. 2002. A fixed point theorem for mappings satisfying a general contractive condition of integral type. International Journal of Mathematics and Mathematical Sciences, 29(9), pp.531-536 [online]. Available at: https://eudml.org/doc/49397 [Accessed: 19 January 2024].
Chen, G.-X., Jabeen, S., Rehman, S.U., Khalil, A.M., Abbas, F., Kanwal, A. & Ullah, H. 2020. Coupled fixed point analysis in fuzzy cone metric spaces with an application to nonlinear integral equations. Advances in Differential Equations, 2020, art.number: 671. Available at: https://doi.org/10.1186/s13662-020-03132-8.
George, A. & Veeramani, P. 1994. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), pp.395-399. Available at: https://doi.org/10.1016/0165-0114(94)90162-7.
Grabiec, M. 1988. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), pp.385-389. Available at: https://doi.org/10.1016/0165-0114(88)90064-4.
Grigorenko, O., Minana, J.J., Šostak, A. & Valero, O. 2020. On t-Conorm Based Fuzzy (Pseudo)metrics. Axioms, 9(3), art.number:78. Available at: https://doi.org/10.3390/axioms9030078.
Guo, D. & Lakshmikantham, V. 1987. Coupled fixed points of nonlinear operators with applications. Nonlinear Analysis: Theory, Methods & Applications, 11(5), pp.623-632. Available at: https://doi.org/10.1016/0362-546X(87)90077-0.
Huang, L.-G. & Zhang, X. 2007. Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2), pp.1468-1476. Available at: https://doi.org/10.1016/j.jmaa.2005.03.087.
Jabeen, S., Rehman, S.U, Zheng, Z. & Wei, W. 2020. Weakly compatible and quasi-contraction results in fuzzy cone metric spaces with application to the Urysohn type integral equations. Advances in Differential Equations, 2020, art.number:280. Available at: https://doi.org/10.1186/s13662-020-02743-5.
Janković, S., Kadelburg, Z. & Radenović, S. 2011. On cone metric spaces: A survey. Nonlinear Analysis: Theory, Methods & Applications, 74(7), pp.2591-2601. Available at: https://doi.org/10.1016/j.na.2010.12.014.
Javed, K., Aydi, H., Uddin, F. & Arshad, M. 2021. On Orthogonal Partial b-Metric Spaces with an Application. Journal of Mathematics, 2021, art.ID:6692063. Available at: https://doi.org/10.1155/2021/6692063.
Kadelburg, Z., Radenović, S. & Rakočević, V. 2011. A note on the equivalence of some metric and cone metric fixed point results. Applied Mathematics Letters, 24(3), pp.370-374. Available at: https://doi.org/10.1016/j.aml.2010.10.030.
Karapinar, E. 2010. Some Nonunique Fixed Point Theorems of Ćirić Type on Cone Metric Spaces. Abstract and Applied Analysis, 2010, art.ID:123094. Available at: https://doi.org/10.1155/2010/123094.
Kider, J.R. 2020. Some Properties of Algebra Fuzzy Metric Space. Journal of Al-Qadisiyah for Computer Science and Mathematics, 12(2), pp.43-56. Available at: https://doi.org/10.29304/jqcm.2020.12.2.695.
Kider, J.R. 2021. Application of Fixed Point in Algebra Fuzzy Normed Spaces. Journal of Physics: Conference Series, 1879, art.number:022099. Available at: https://doi.org/10.1088/1742-6596/1879/2/022099.
Kramosil, I. & Michálek, J. 1975. Fuzzy metrics and statistical metric spaces. Kybernetika, 11(5), pp.336-344 [online] . Available at: https://www.kybernetika.cz/content/1975/5/336 [Accessed: 19 January 2024].
Lakshmikantham, V. & Ćirić, L. 2009. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 70(12), pp.4341-4349. Available at: https://doi.org/10.1016/j.na.2008.09.020.
Li, X., Rehman, S.U., Khan, S.U., Aydi, H., Ahmad, J. & Hussain, N. 2021. Strong Coupled Fixed Point Results and Applications to Urysohn Integral Equations. Dynamic Systems and Applications, 30(2), pp.197-218. Available at: https://doi.org/10.46719/dsa20213023.
Muraliraj, A., Shanmugavel, P. & Thangathamizh, R. 2024. Fixed Point Theorems on Modular Revised Fuzzy Metric Spaces. Communications on Applied Nonlinear Analysis, 31(3s), pp.212-226. Available at: https://doi.org/10.52783/cana.v31.760.
Muraliraj, A. & Thangathamizh, R. 2021a. Fixed point theorems in revised fuzzy metric space. Advances in Fuzzy Sets and Systems, 26(2), pp.103-115. Available at: https://doi.org/10.17654/FS026020103.
Muraliraj, A. & Thangathamizh, R. 2021b. Introduction on Revised fuzzy modular spaces. Global Journal of Pure and Applied Mathematics, 17(2), pp.303-317. Available at: https://doi.org/10.37622/GJPAM/17.2.2021.303-317.
Muraliraj, A. & Thangathamizh, R. 2022. Relation-Theoretic Revised Fuzzy Banach Contraction Principle and Revised Fuzzy Eldestein Contraction Theorem. JMSCM Journal of Mathematical Sciences & Computational Mathematics, 3(2), pp.197-207. Available at: https://doi.org/10.15864/jmscm.3205.
Muraliraj, A. & Thangathamizh, R. 2023a. Some topological properties of revised fuzzy cone metric spaces. Ratio Mathematica, 47, pp.42-51. Available at: https://doi.org/10.23755/rm.v47i0.734.
Muraliraj, A. & Thangathamizh, R. 2023b. New Relation-Theoretic Fixed Point Theorems in Revised Fuzzy Metric Spaces with an Application to Fractional Differential Equations. Communications in Mathematics and Applications, 14(2), pp.865-880. Available at: https://doi.org/10.26713/cma.v14i2.1772.
Muraliraj, A., Thangathamizh, R., Popovic, N., Savic, A. & Radenovic, S. 2023. The First Rational Type Revisd Fuzzy-Contractions in Revisd Fuzzy Metric Spaces with an Applications. Mathematics, 11(10), art.number:2244. Available at: https://doi.org/10.3390/math11102244.
Öner, T., Kandemire, M.B. & Tanay, B. 2015. Fuzzy cone metric spaces. Journal of Nonlinear Sciences and Applications, 8(5), pp.610-616. Available at: https://doi.org/10.22436/jnsa.008.05.13.
Öner, T. & Šostak, A. 2020. On Metric-Type Spaces Based on Extended T-Conorms. Mathematics, 8(7), art.number:1097. Available at: https://doi.org/10.3390/math8071097.
Parakath Nisha Bagam, P., Sandhya, P., Thangathamizh, R., Shanmugavel, P., Sarathbabu, K. & Anusuya, R. 2024. Fixed Point Theorems in Revised Fuzzy Metric Space via RF -Contraction. Communications on Applied Nonlinear Analysis, 31(3s), pp. Available at: https://doi.org/10.52783/cana.v31.761.
Rehman, S.U. & Aydi, H. 2021. Rational Fuzzy Cone Contractions on Fuzzy Cone Metric Spaces with an Application to Fredholm Integral Equations. Journal of Function Spaces, 2021(1), art.number:5527864. Available at: https://doi.org/10.1155/2021/5527864.
Rezapour, S. & Hamlbarani, R. 2008. Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings”. Journal of Mathematical Analysis and Applications, 345(2), pp.719-724. Available at: https://doi.org/10.1016/j.jmaa.2008.04.049.
Shamas, I., Rehman, S.U., Aydi, H., Mahmood T. & Ameer, E. 2021. Unique Fixed-Point Results in Fuzzy Metric Spaces with an Application to Fredholm Integral Equations. Journal of Function Spaces, 2021, art.ID:429173. Available at: https://doi.org/10.1155/2021/4429173.
Šostak, A. 2018. George-Veeramani Fuzzy Metrics Revised. Axioms, 7(3), art.number:60. Available at: https://doi.org/10.3390/axioms7030060.
Zadeh, L.A. 1965. Fuzzy Sets. Information and Control, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X.
Copyright (c) 2024 Thangathamizh Ravichandhiran, Muraliraj Angamuthu, Shanmugavel Periyasamy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).