New approach of Lebesgue integral in revised fuzzy cone metric spaces via unique coupled fixed point theorems

Keywords: revised fuzzy metric, revised fuzzy cone, fixed point

Abstract


Introduction/purpose: This article introduces the concept of revised fuzzy cone contraction by using the concept of a traiangular conorm and Revised Fuzzy Cone contractive conditions. 

Methods: This article established new Revised Fuzzy Cone Contraction (RFC-C) type unique coupled Fixed Point theorems (FP theorems) in revised fuzzy cone metric spaces (RFCMS) by using the triangular property of RFCMS.

Results: The obtained results on fixed points in revised fuzzy cone metric spaces generalize some known results in the litrature and present illustrative examples to support the main work.

Conclusion: The RFC contractive conditions generalize some important contraction types and examine the existence of a fixed point in revised fuzzy cone metric spaces. In addition, the Lebesgue integral type mapping is applied to get the existence result of a unique coupled fixed point in RFCMS to validate the main work.

References

Bhaskar, T.G. & Lakshmikantham, V. 2006. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis: Theory, Methods & Applications, 65(7), pp.1379-1393. Available at: https://doi.org/10.1016/j.na.2005.10.017.

Branciari, A. 2002. A fixed point theorem for mappings satisfying a general contractive condition of integral type. International Journal of Mathematics and Mathematical Sciences, 29(9), pp.531-536 [online]. Available at: https://eudml.org/doc/49397 [Accessed: 19 January 2024].

Chen, G.-X., Jabeen, S., Rehman, S.U., Khalil, A.M., Abbas, F., Kanwal, A. & Ullah, H. 2020. Coupled fixed point analysis in fuzzy cone metric spaces with an application to nonlinear integral equations. Advances in Differential Equations, 2020, art.number: 671. Available at: https://doi.org/10.1186/s13662-020-03132-8.

George, A. & Veeramani, P. 1994. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), pp.395-399. Available at: https://doi.org/10.1016/0165-0114(94)90162-7.

Grabiec, M. 1988. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), pp.385-389. Available at: https://doi.org/10.1016/0165-0114(88)90064-4.

Grigorenko, O., Minana, J.J., Šostak, A. & Valero, O. 2020. On t-Conorm Based Fuzzy (Pseudo)metrics. Axioms, 9(3), art.number:78. Available at: https://doi.org/10.3390/axioms9030078.

Guo, D. & Lakshmikantham, V. 1987. Coupled fixed points of nonlinear operators with applications. Nonlinear Analysis: Theory, Methods & Applications, 11(5), pp.623-632. Available at: https://doi.org/10.1016/0362-546X(87)90077-0.

Huang, L.-G. & Zhang, X. 2007. Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2), pp.1468-1476. Available at: https://doi.org/10.1016/j.jmaa.2005.03.087.

Jabeen, S., Rehman, S.U, Zheng, Z. & Wei, W. 2020. Weakly compatible and quasi-contraction results in fuzzy cone metric spaces with application to the Urysohn type integral equations. Advances in Differential Equations, 2020, art.number:280. Available at: https://doi.org/10.1186/s13662-020-02743-5.

Janković, S., Kadelburg, Z. & Radenović, S. 2011. On cone metric spaces: A survey. Nonlinear Analysis: Theory, Methods & Applications, 74(7), pp.2591-2601. Available at: https://doi.org/10.1016/j.na.2010.12.014.

Javed, K., Aydi, H., Uddin, F. & Arshad, M. 2021. On Orthogonal Partial b-Metric Spaces with an Application. Journal of Mathematics, 2021, art.ID:6692063. Available at: https://doi.org/10.1155/2021/6692063.

Kadelburg, Z., Radenović, S. & Rakočević, V. 2011. A note on the equivalence of some metric and cone metric fixed point results. Applied Mathematics Letters, 24(3), pp.370-374. Available at: https://doi.org/10.1016/j.aml.2010.10.030.

Karapinar, E. 2010. Some Nonunique Fixed Point Theorems of Ćirić Type on Cone Metric Spaces. Abstract and Applied Analysis, 2010, art.ID:123094. Available at: https://doi.org/10.1155/2010/123094.

Kider, J.R. 2020. Some Properties of Algebra Fuzzy Metric Space. Journal of Al-Qadisiyah for Computer Science and Mathematics, 12(2), pp.43-56. Available at: https://doi.org/10.29304/jqcm.2020.12.2.695.

Kider, J.R. 2021. Application of Fixed Point in Algebra Fuzzy Normed Spaces. Journal of Physics: Conference Series, 1879, art.number:022099. Available at: https://doi.org/10.1088/1742-6596/1879/2/022099.

Kramosil, I. & Michálek, J. 1975. Fuzzy metrics and statistical metric spaces. Kybernetika, 11(5), pp.336-344 [online] . Available at: https://www.kybernetika.cz/content/1975/5/336 [Accessed: 19 January 2024].

Lakshmikantham, V. & Ćirić, L. 2009. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 70(12), pp.4341-4349. Available at: https://doi.org/10.1016/j.na.2008.09.020.

Li, X., Rehman, S.U., Khan, S.U., Aydi, H., Ahmad, J. & Hussain, N. 2021. Strong Coupled Fixed Point Results and Applications to Urysohn Integral Equations. Dynamic Systems and Applications, 30(2), pp.197-218. Available at: https://doi.org/10.46719/dsa20213023.

Muraliraj, A., Shanmugavel, P. & Thangathamizh, R. 2024. Fixed Point Theorems on Modular Revised Fuzzy Metric Spaces. Communications on Applied Nonlinear Analysis, 31(3s), pp.212-226. Available at: https://doi.org/10.52783/cana.v31.760.

Muraliraj, A. & Thangathamizh, R. 2021a. Fixed point theorems in revised fuzzy metric space. Advances in Fuzzy Sets and Systems, 26(2), pp.103-115. Available at: https://doi.org/10.17654/FS026020103.

Muraliraj, A. & Thangathamizh, R. 2021b. Introduction on Revised fuzzy modular spaces. Global Journal of Pure and Applied Mathematics, 17(2), pp.303-317. Available at: https://doi.org/10.37622/GJPAM/17.2.2021.303-317.

Muraliraj, A. & Thangathamizh, R. 2022. Relation-Theoretic Revised Fuzzy Banach Contraction Principle and Revised Fuzzy Eldestein Contraction Theorem. JMSCM Journal of Mathematical Sciences & Computational Mathematics, 3(2), pp.197-207. Available at: https://doi.org/10.15864/jmscm.3205.

Muraliraj, A. & Thangathamizh, R. 2023a. Some topological properties of revised fuzzy cone metric spaces. Ratio Mathematica, 47, pp.42-51. Available at: https://doi.org/10.23755/rm.v47i0.734.

Muraliraj, A. & Thangathamizh, R. 2023b. New Relation-Theoretic Fixed Point Theorems in Revised Fuzzy Metric Spaces with an Application to Fractional Differential Equations. Communications in Mathematics and Applications, 14(2), pp.865-880. Available at: https://doi.org/10.26713/cma.v14i2.1772.

Muraliraj, A., Thangathamizh, R., Popovic, N., Savic, A. & Radenovic, S. 2023. The First Rational Type Revisd Fuzzy-Contractions in Revisd Fuzzy Metric Spaces with an Applications. Mathematics, 11(10), art.number:2244. Available at: https://doi.org/10.3390/math11102244.

Öner, T., Kandemire, M.B. & Tanay, B. 2015. Fuzzy cone metric spaces. Journal of Nonlinear Sciences and Applications, 8(5), pp.610-616. Available at: https://doi.org/10.22436/jnsa.008.05.13.

Öner, T. & Šostak, A. 2020. On Metric-Type Spaces Based on Extended T-Conorms. Mathematics, 8(7), art.number:1097. Available at: https://doi.org/10.3390/math8071097.

Parakath Nisha Bagam, P., Sandhya, P., Thangathamizh, R., Shanmugavel, P., Sarathbabu, K. & Anusuya, R. 2024. Fixed Point Theorems in Revised Fuzzy Metric Space via RF -Contraction. Communications on Applied Nonlinear Analysis, 31(3s), pp. Available at: https://doi.org/10.52783/cana.v31.761.

Rehman, S.U. & Aydi, H. 2021. Rational Fuzzy Cone Contractions on Fuzzy Cone Metric Spaces with an Application to Fredholm Integral Equations. Journal of Function Spaces, 2021(1), art.number:5527864. Available at: https://doi.org/10.1155/2021/5527864.

Rezapour, S. & Hamlbarani, R. 2008. Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings”. Journal of Mathematical Analysis and Applications, 345(2), pp.719-724. Available at: https://doi.org/10.1016/j.jmaa.2008.04.049.

Shamas, I., Rehman, S.U., Aydi, H., Mahmood T. & Ameer, E. 2021. Unique Fixed-Point Results in Fuzzy Metric Spaces with an Application to Fredholm Integral Equations. Journal of Function Spaces, 2021, art.ID:429173. Available at: https://doi.org/10.1155/2021/4429173.

Šostak, A. 2018. George-Veeramani Fuzzy Metrics Revised. Axioms, 7(3), art.number:60. Available at: https://doi.org/10.3390/axioms7030060.

Zadeh, L.A. 1965. Fuzzy Sets. Information and Control, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X.

Published
2024/09/28
Section
Original Scientific Papers