Exploring multivalued probabilistic ψ-contractions with orbits in b-Menger spaces

  • Youssef Achtoun Abdelmalek Essaadi University, Normal Higher School, Department of Mathematics and Computer Science, Tetouan, Kingdom of Morocco https://orcid.org/0009-0005-5334-2383
  • Stojan Radenović University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Republic of Serbia https://orcid.org/0000-0001-8254-6688
  • Ismail Tahiri Abdelmalek Essaadi University, Normal Higher School, Department of Mathematics and Computer Science, Tetouan, Kingdom of Morocco https://orcid.org/0000-0002-7723-3721
  • Mohammed Lamarti Sefian Abdelmalek Essaadi University, Normal Higher School, Department of Mathematics and Computer Science, Tetouan, Kingdom of Morocco
Keywords: fixed point, b-Menger spaces, multivalued ψ-contraction, fuzzy b-metric space

Abstract


Introduction/purpose: The paper presents a novel approach to certain well-established fixed point theorems for multivalued probabilistic con- tractions in b-Menger spaces, leveraging the boundedness of the orbits. The aim was to generalize and enhance the results previously derived by Fang and Hadžić.

Methods: The boundedness of orbits in b-Menger spaces is used to establish their approach for multivalued probabilistic contractions.

Results: The findings of the study not only generalized the existing fixed point theorems but also enhanced them significantly. The effectiveness of the approach in extending the results originally proposed by Fang and Hadžić was showcased. Moreover, the applicability of the coincidence fixed point theorem in fuzzy b-metric spaces was demonstrated.

Conclusions: The study presented a novel perspective on fixed point the- orems in multivalued probabilistic contractions within b-Menger spaces. By leveraging boundedness and introducing a coincidence fixed point theorem for fuzzy b-metric spaces, the work contributed to the advance- ment in this field.

 

References

Achtoun, Y., Sefian, M.L. & Tahiri, I. 2023. (f, g)-φ-Contraction Mappings in Menger. Results in Nonlinear Analysis, 6(3), pp. 97–106 [online]. Available at: https://nonlinear-analysis.com/index.php/pub/article/view/201 [Accessed: 1 February 2024].

Bakhtin, I.A. 1989. The contraction mapping principle in almost metric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30, pp. 26–37.

Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur ap- plications aux équations intégrales. Fundamenta mathematicae, 3, pp. 133–181. Available at: https://doi.org/10.4064/fm-3-1-133-181.

Berinde, V. & Păcurar, M. 2022. The early developments in fixed point theory on b-metric spaces: a brief survey and some important related aspects. Carpathian Journal of Mathematics, 38(3), pp. 523–538 [online]. Available at: https://www.carpathian.cunbm.utcluj.ro/wp-content/uploads/carpathian_2022_38_3_523_538.pdf [Accessed: 1 February 2024].

Czerwik, S. 1993. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), pp. 5–11 [online]. Available at: https://dml.cz/handle/10338.dmlcz/120469 [Accessed: 1 February 2024].

Fang, J.X. 1992. A note on fixed point theorems of Hadžic. Fuzzy Sets and Systems, 48(3), pp. 391–395. Available at: https://doi.org/10.1016/0165-0114(92)90355-8.

Hadžic, O. 1989. Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces. Fuzzy sets and Systems, 29(1), pp. 115–125. Available at: https://doi.org/10.1016/0165-0114(89)90140-1.

Huang, H., Došenović, T., Rakić, D. & Radenović, S. 2023. Fixed Point Results in Generalized Menger Probabilistic Metric Spaces with Applications to Decompos- able Measures. Axioms, 12(7), art.number:660. Available at: https://doi.org/10.3390/axioms12070660.

Kramosil, I. & Michálek, J. 1975. Fuzzy metrics and statistical metric spaces. Kybernetika, 11(5), pp. 336–344 [online]. Available at: https://dml.cz/handle/10338.dmlcz/125556 [Accessed: 1 February 2024].

Mbarki, A. & Oubrahim, R. 2017. Probabilistic b-metric spaces and nonlinear contractions. Fixed Point Theory and Applications, 2017, art.number:29. Available at: https://doi.org/10.1186/s13663-017-0624-x.

Menger, K. 2003. Statistical Metrics. In: Schweizer, B. et al. (Eds.) Selecta Mathematica. II, pp.433–435. Vienna: Springer. Available at: par https://doi.org/10.1007/978-3-7091-6045-9_35.

Mihet, D. 2005. Multivalued generalisations of probabilistic contractions. Jour- nal of Mathematical Analysis and Applications, 304(2), pp. 464–472. Available at: https://doi.org/10.1016/j.jmaa.2004.09.034.

Nădăban, S. 2016. Fuzzy b-metric spaces. International Journal of Computers Communications & Control, 11(2), pp. 273–281 [online]. Available at: https://univagora.ro/jour/index.php/ijccc/article/view/2443 [Accessed: 1 February 2024].

Nadler Jr, S.B. 1969. Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), pp. 475–488. Available at: https://doi.org/10.2140/pjm.1969.30.475.

Pap, E., Hadžić, O. & Mesiar, R. 1996. A Fixed Point Theorem in Probabilistic Metric Spaces and an Application. Journal of Mathematical Analysis and Applica- tions, 202(2), pp. 433–449. Available at: https://doi.org/10.1006/jmaa.1996.0325.

Patle, P., Patel, D., Aydi, H. & Radenović, S. 2019. ON H+Type Multivalued Contractions and Applications in Symmetric and Probabilistic Spaces. Mathemat- ics, 7(2), art.number:144. Available at: https://doi.org/10.3390/math7020144.

Schweizer, B. & Sklar, A. 1983. Probabilistic Metric Spaces. Mineola, New York: Dover Publications, Inc. ISBN: 0-486-44514-3.

Sherwood, H. 1971. Complete probabilistic metric spaces. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 20, pp. 117–128. Available at: https://doi.org/10.1007/BF00536289.

Published
2024/06/10
Section
Original Scientific Papers