Mechanical behaviour of austenitic stainless steel loaded in the aqueous solution of H2SO4 during tensile testing

  • Amar Abboub Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Mechanical Engineering, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0004-0158-5837
  • Ahmed Aboura Ahmed Zabana University, Faculty of Sciences and Technology, Department of Mechanical Engineering, Relizane, People's Democratic Republic of Algeria https://orcid.org/0009-0005-3509-2026
  • Khaled Benmahdi Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Civil Engineering, Laboratory for the Study of Structures and Mechanics of Materials, Mascara, People's Democratic Republic of Algeria https://orcid.org/0000-0002-8244-5817
  • Mohamed Sadoun Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Civil Engineering, Laboratory for the Study of Structures and Mechanics of Materials, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0008-2314-9402
  • Mokhtar Belkacem Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Mechanical Engineering, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0004-2533-9622
  • Djameleddine Semsoum Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Mechanical Engineering, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0009-8304-9072
Keywords: austenitic stainless steel, heat treatments, hydrogen pre-loaded, mechanical properties, hydrogen embrittlement (HE), faces

Abstract


Introduction/purpose: Stainless steels have excellent corrosion resistance and adequate mechanical properties. However, their use in aggressively hydrogenated environments in the energy industry causes a loss of ductility. This work studied the effect of hydrogen on the mechanical behavior of the DINX15CrNiSi25.21/AISI310 austenitic stainless steel loaded in an aqueous solution of purely sulfuric acid H2SO4 at 1N at room temperature during tensile testing.

Methods: Experimental characterization techniques are applied to standardised machining-manufactured tensile specimens which underwent a series of heat treatments ranging from quenching at 1050°C for 35 minutes to tempering at 680°C for 30 minutes. This is accompanied by a succession of immersions of these samples by cryogenic quenching cycles at -196°C for a duration of 1 hour. The hydrogen was electrolytically loaded in a Pyrex glass cell for various loading times, ranging from 1h00 to 15h00, with a step of 2h00.

Results: The results showed a reduction in mechanical properties and plasticity. The electrochemical method confirmed the material's sensitivity to hydrogen embrittlement, calculating the embrittlement criterion EI (%). This method indicates a rapid increase in values depending on hydrogen loading times, with a maximum value of 41.60%.

Conclusion: The study highlights the negative impact of hydrogen on the mechanical properties of  AISI310 stainless steel, emphasising the need for reduced hydrogen exposure in steel applications.

Author Biographies

Ahmed Aboura, Ahmed Zabana University, Faculty of Sciences and Technology, Department of Mechanical Engineering, Relizane, People's Democratic Republic of Algeria

 

 

Khaled Benmahdi, Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Civil Engineering, Laboratory for the Study of Structures and Mechanics of Materials, Mascara, People's Democratic Republic of Algeria

 

 

Mohamed Sadoun, Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Civil Engineering, Laboratory for the Study of Structures and Mechanics of Materials, Mascara, People's Democratic Republic of Algeria

 

 

Mokhtar Belkacem, Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Mechanical Engineering, Mascara, People's Democratic Republic of Algeria

 

 

References

Bach, A.-C. 2018. Etude du piégeage de l’hydrogène dans un acier inoxydable austénitique dans le cadre de la corrosion sous contrainte assistée par l’irradiation. PhD thesis. Paris: Université PSL (Paris Sciences & Lettres) [online]. Available at: https://theses.fr/2018PSLEM044 [Accessed: 20 March 2024].

Barralis, J., Castex, L. & Maeder, G. 1999. Précontraintes et traitements superficiels. Techniques de L’Ingénieur - Traitements des métaux, art.ref:M1180v2, December 10. Available at: https://doi.org/10.51257/a-v2-m1180.

Brass, A.-M., Chêne, J. & Coudreuse, L. 2000. Fragilisation des aciers par l’hydrogène : étude et prévention. Techniques de L’Ingénieur - Corrosion Vieillissement, art.ref:M175v2, June 10. Available at: https://doi.org/10.51257/a-v2-m175.

Cauwels, M., Claeys, L., Depover, T. & Verbeken, K. 2020. The hydrogen embrittlement sensitivity of duplex stainless steel with different phase fractions evaluated by in-situ mechanical testing. Frattura ed Integrità Strutturale, 14(51), pp.449-458. Available at: https://doi.org/10.3221/IGF-ESIS.51.33.

Chauveau, E. & Aubry, D. 2008. Les aciers inoxydables austéno-ferritiques en fils et barres et leur utilisation dans l’industrie de l’eau. Techniques Sciences Méthodes, 6, pp.65-72. Available at: https://doi.org/10.1051/tsm/200806065.

Chêne, J. 2009. L’hydrogène dans les matériaux métalliques en relation avec les interactions plasticité-environnement. In: Viguier, B. (Ed.) PlastOx 2007 - Mécanismes et Mécanique des Interactions Plasticité - Environnement, Argelès-sur-Mer, France, pp.131-145, May 19-25. Available at: https://doi.org/10.1051/ptox/2009010.

Depover, T., Pérez Escobar, D., Wallaert, E., Zermout, Z. & Verbeken, K. 2014. Effect of hydrogen charging on the mechanical properties of advanced high strength steels. International Journal of Hydrogen Energy, 39(9), pp.4647-4656. Available at: https://doi.org/10.1016/j.ijhydene.2013.12.190.

Grimault, B., Chauveau, E., Gaillet, L., Drissi-Habti, M., Chaussadent, T. & Mantel, M. 2012. Comportement d’aciers inoxydables à hautes caractéristiques mécaniques vis-à-vis de la corrosion par piqûre et de la fragilisation par hydrogène. Matériaux & Techniques, 100(2), pp.113-125. Available at: https://doi.org/10.1051/mattech/2012008.

Hamissi, C., Lakhdari, A.A., Aboura, A. & Seddak, M. 2016. Hydrogénation Des Vis En Acier 35b2 Lors Du Décapage Acide. Revue des matériaux et énergies renouvelables, 1(1), pp.1-7. Available at: https://www.asjp.cerist.dz/en/article/67672 [Accessed: 10 July 2024].

He, J., Han, G., Fukuyama, S. & Yokogawa, K. 1999. Tensile behaviour of duplex stainless steel at low temperatures. Materials Science and Technology, 15(8), pp.909-920. Available at: https://doi.org/10.1179/026708399101506715.

Iacoviello, F. 1995. V - Fragilisation par l’hydrogène de l’acier inoxydable duplex Z2CND2205 chargé en hydrogène à 200°C. Matériaux & Techniques, 83, pp.48-50. Available at: https://doi.org/10.1051/mattech/199583120048s.

Kenfack, C. 2015. Guide hors production operateur traitement thermique. Academia [online]. Available at: https://www.academia.edu/33201915/Guide_hors_production_operateur_traitement_thermique [Accessed: 10 July 2024].

Kittel, J., Ropital, F., Grosjean, F., Sutter, E.M.M. & Tribollet, B. 2013. Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 1: Characterisation of H2S reduction on a 316L rotating disc electrode. Corrosion Science, 66, pp.324-329. Available at: https://doi.org/10.1016/j.corsci.2012.09.036.

Laureys, A., Pinson, M., Claeys, L., Deseranno, T., Depover, T. & Verbeken, K. 2020. Initiation of hydrogen induced cracks at secondary phase particles. Frattura ed Integrità Strutturale, 14(52), pp.113-127. Available at: https://doi.org/10.3221/IGF-ESIS.52.10.

Lo, K.H., Shek, C.H. & Lai, J.K.L. 2009. Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4–6), pp.39-104. Available at: https://doi.org/10.1016/j.mser.2009.03.001.

Lynch, S. 2012. Hydrogen embrittlement phenomena and mechanisms. Corrosion Reviews, 30(3-4), pp.105-123. Available at: https://doi.org/10.1515/corrrev-2012-0502.

Matsui, H., Kimura, H. & Moriya, S. 1979. The effect of hydrogen on the mechanical properties of high purity iron I. Softening and hardening of high purity iron by hydrogen charging during tensile deformation. Materials Science and Engineering, 40(2), pp.207-216. Available at: https://doi.org/10.1016/0025-5416(79)90191-5.

Philibert, J., Vignes, A., Bréchet, Y. & Combrade, P. 2013. Métallurgie. Du minerai au matériau, 2e édition. Paris: Dunod [online]. Available at: https://www.dunod.com/sites/default/files/atoms/files/9782100597543/Feuilletage.pdf. ISBN: 978-2-10-059754-3.

Poupeau, P. 1981. Traitements thermiques des métaux et alliages. Techniques de L’Ingénieur - Traitements des métaux, art.ref:M1105v1, January 10. Available at: https://doi.org/10.51257/a-v1-m1105.

Robertson, I.M., Sofronis, P., Nagao, A., Martin, M.L., Wang, S., Gross, D.W. & Nygren, K.E. 2015. Hydrogen Embrittlement Understood. Metallurgical and Materials Transactions A, 46(6), pp.2323-2341. Available at: https://doi.org/10.1007/s11661-015-2836-1.

Sales, D.G. 2015. Etude des mécanismes d’endommagement d’aciers martensitiques associés au SSC (Sulphide Stress Cracking). PhD thesis. University of Rochelle [online]. Available at: https://theses.fr/2015LAROS041 [Accessed: 20 March 2024].

Sassoulas, H. 1997. Traitements thermiques des aciers inoxydables. Techniques de L’Ingénieur - Traitements des métaux, art.ref:M1155v2, March 10. Available at: https://doi.org/10.51257/a-v2-m1155.

Smanio, V., Fregonese, M., Kittel, J., Cassagne, T., Ropital, F. & Normand, B. 2008. Wet Hydrogen Sulfide Cracking Monitoring by Acoustic Emission. In: Eurocorr 2008, Edinburgh, UK, September [online]. Available at: https://ifp.hal.science/hal-02475510 [Accessed: 20 March 2024].

Published
2024/11/17
Section
Original Scientific Papers