Tensile examination of progressive damage and failure in porous ceramic composite materials using the XFEM

  • Aicha Metehri University of Sidi Bel Abbes, Faculty of Technology, Mechanical Engineering Department, Laboratory of Physical Mechanics of Materials, Sidi Bel Abbès, People's Democratic Republic of Algeria https://orcid.org/0009-0002-2221-6833
  • Kouider Madani University of Sidi Bel Abbes, Faculty of Technology, Mechanical Engineering Department, Laboratory of Physical Mechanics of Materials, Sidi Bel Abbès, People's Democratic Republic of Algeria https://orcid.org/0000-0003-3277-1187
  • Belaïd Mechab University of Sidi Bel Abbes, Faculty of Technology, Mechanical Engineering Department, Laboratory of Physical Mechanics of Materials, Sidi Bel Abbès, People's Democratic Republic of Algeria https://orcid.org/0009-0000-7483-5527
  • Mohammed Mokhtari ENPO-MA - National Polytechnic School of Oran-Maurice Audin, Mechanical Engineering Department, Mechanical Manufacturing Technology Research Laboratory, Oran, People's Democratic Republic of Algeria https://orcid.org/0000-0001-7255-2312
  • Ilias M.A. Ghermaoui University of Sidi Bel Abbes, Faculty of Technology, Mechanical Engineering Department, Laboratory of Physical Mechanics of Materials, Sidi Bel Abbès, People's Democratic Republic of Algeria https://orcid.org/0000-0001-7935-5362
Keywords: composite, XFEM, tensile load, failure load, fibre reinforced, size

Abstract


Introduction/purpose: Porosity is a significant factor that causes voids to become trapped in materials during composite material fabrication. This study is dedicated to modelling fracture modes within highly stressed areas of an advanced SiC/Cf component at a macroscopic scale.

Methods: The finite element method is used to analyze defects within composites, considering factors such as porosity size, shape, and tensile stress. The Monte Carlo method predicts the distribution function (F).

Results: Three pores are distributed across the width of the material, which reduces the active cross-sectional area of the material and, consequently, leads to a significant reduction in strength. Overall, resistance tends to decrease, with a more noticeable drop.

Conclusion: It is concluded how the form and the size affect the failure load, employing the Extended Finite Element Method (XFEM) to predict mode-I fracture behaviour. The porosity parameter significantly affects the durability of the structure. It is noted that the size of pores (ϕ) is a crucial component that affects the distribution function (F). The variability in this parameter substantially elevates the likelihood of plate failure and diminishes the  longevity of a structure. 

References

Barrett, E.P., Joyner, L.G. & Halenda, P.P. 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), pp.373-380. Available at: https://doi.org/10.1021/ja01145a126.

Bartuli, C., Bemporad, E., Tulliani,J.M., Tirillò, J., Pulci, G. & Sebastiani, M. 2009. Mechanical properties of cellular ceramics obtained by gel casting: Characterization and modeling. Journal of the European Ceramic Society, 29(14), pp.2979-2989. Available at: https://doi.org/10.1016/J.Jeurceramsoc.2009.04.035.

Benzaama, A., Mokhtari, M., Benzaama, H., Gouasmi, S. & Tamine, T. 2018. Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load. Advances in aircraft and spacecraft science, 5(1), pp.129-139. Available at: https://doi.org/10.12989/aas.2018.5.1.129.

Carrère, N., Martin, E. & Lamon, J. 2000. The influence of the interphase and associated interfaces on the deflection of matrix cracks in ceramic matrix composites. Composites Part A: Applied Science and Manufacturing, 31(11), pp.1179–1190. Available at: https://doi.org/10.1016/s1359-835x(00)00095-6.

Cui, Z., Huang, Y. & Liu, H. 2017. Predicting the mechanical properties of brittle porous materials with various porosity and pore sizes. Journal of the Mechanical Behavior of Biomedical Materials, 71, pp.10-22. Available at: https://doi.org/10.1016/j.jmbbm.2017.02.014.

-Dassault Systems, The 3D EXPERIENCE platform. 2014. Simulia: AbaqusFinite Element Analysis for Mechanical Engineering and Civil Engineering [online]. Available at: https://www.3ds.com/products/simulia/abaqus [Accessed: 25 March 2024].

Evans, A.G, Biswas, D.R. & Fulrath, R.M. 1979. Some Effects of Cavities on the Fracture of Ceramics: II, Spherical Cavities. Journal of the American Ceramic Society (JACerS), 62(1-2), pp.101-106. Available at: https://doi.org/10.1111/j.1151-2916.1979.tb18815.x.

Gavalda Diaz, O., Axinte, D.A., Butler-Smith, P. & Novovic, D. 2019. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process. Materials Science and Engineering: A, 743, pp.1-11. Available at: https://doi.org/10.1016/j.msea.2018.11.037.

Gowayed, Y., Ojard, G., Prevost, E., Santhosh, U. & Jefferson, G. 2013. Defects in ceramic matrix composites and their impact on elastic properties. Composites Part B: Engineering, 55, pp.167-175. Available at: https://doi.org/10.1016/j.compositesb.2013.06.026.

Griffith, A.A. 1921. VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221, pp.163-198. Available at: https://doi.org/10.1098/rsta.1921.0006.

Hatti, P.S., Sampath Kumar, L., Somanakatti, A.B. & Rakshith, M.N. 2021. Investigation on tensile behavior of glass-fiber reinforced polymer matrix composite with varying orientations of fibers. Materials Today: Proceedings, 54(2), pp.137-140. Available at: https://doi.org/10.1016/j.matpr.2021.08.196.

Irwin, G.R. 1960. Fracture Mode Transition for a Crack Traversing a Plate. Journal of Basic Engineering, 82(2), pp.417-423. Available at: https://doi.org/10.1115/1.3662608.

Keleş, Ö., Anderson, E.H., Huynh, J., Gelb, J., Freund, J. & Karakoç, A. 2018. Stochastic fracture of additively manufactured porous composites. Scientific Reports, 8, art.number:15437. Available at: https://doi.org/10.1038/S41598-018-33863-4.

Kishore, C., Jaiswal, R., Bhatt, V., Jugran, S., Rawat, D. & Verma, D. 2021. Analysis of glass fiber reinforced with epoxy resin using FEM. Materials Today: Proceedings, 46(20), pp.11120-11128. Available at: https://doi.org/10.1016/j.matpr.2021.02.273.

Kumari, N.B.V.L., Mehar, A., Abdulrahman, M., Tatineni, S., Venkateshwara Shashank, E. & Ted Muthyala, J. 2018. Performance Analysis of Ply Orientation in Composite Laminates. Materials Today: Proceedings, 5(2), pp.5984-5992. Available at: https://doi.org/10.1016/j.matpr.2017.12.200.

Lang, Y., Zhao, L., Dai, X. & Wang, C.-A., 2018. Effect of alumina fiber content on pore structure and properties of porous ceramics. International Journal of Applied Ceramic Technology, 16(2), pp.814-819. Available at: https://doi.org/10.1111/ijac.13123.

Luan, K., Liu, J., Sun, B., Zhang, W., Hu, J., Fang, X., Ming, C., Song, E. 2018. High strain rate compressive response of the Cf/SiC composite. Ceramics International, 45(6), pp.6812-6818. Available at: https://doi.org/10.1016/j.ceramint.2018.12.174.

Mechab, B., Chama, M., Kaddouri, K.& Slimani, D. 2016. Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch. Steel and Composite Structures, 20(6), pp.1173-1182. Available at: https://doi.org/10.12989/scs.2016.20.6.1173.

Meille, S., Lombardi, M., Chevalier, J. & Montanaro, L. 2012. Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. Journal of the European Ceramic Society, 32(15), pp. 3959-3967. Available at: https://doi.org/10.1016/J.Jeurceramsoc.2012.05.006.

Metehri, A., Serier, B., Bachir bouiadjra, B., Belhouari, M. & Mecirdi, M.A. 2009. Numerical analysis of the residual stresses in polymer matrix composites. Materials & Design, 30(7), pp.2332–2338. Available at: https://doi.org/10.1016/j.matdes.2008.11.009.

Michael, Z., Mahisham, I., Mahadi, M.F., Mohd Amin, A.N., Syed Ahmad, S. I.H. & Mahmud, J. 2021. Deformation and failure behavior of hybrid composite laminates made of Glass Epoxy and woven Kevlar Epoxy. Materials Today: Proceedings, 46(4), pp.1618-1625. Available at: https://doi.org/10.1016/j.matpr.2020.07.253.

Mizerska, U., Fortuniak, W., Chojnowski, J., Rubinsztajn, S., Zakrzewska, J., Bak-Sypien, I. & Nyczyk-Malinowska, A. 2022. Porous SiC and SiC/Cf Ceramic Microspheres Derived from Polyhydromethyl siloxane by Carbothermal Reduction. Materials, 15(1), art.number: 81. Available at: https://doi.org/10.3390/ma15010081.

Monerie, Y. 2000. Fissuration des matériaux composites : rôle de l'interface fibre-matrice. PhD thesis. Marseille: Université de la mediterranee aix-Marseille II [online]. Available at: https://theses.fr/2000AIX22054 [Accessed: 25March 2024].

Muthalagu, R., Murugesan, J., Sathees Kumar, S. & Sridhar Babu, B. 2021. Tensile attributes and material Analysis of kevlar and date palm fibers reinforced epoxy composites for automotive bumper applications. Materials Today: Proceedings, 46(1), pp.433-438. Available at: https://doi.org/10.1016/j.matpr.2020.09.777.

Pia, G., Casnedi, L. & Sanna, U. 2016. Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), pp.5802-5809. Available at: https://doi.org/10.1016/J.Ceramint.2015.12.122.

Rezaee, S., Ranjbar, K. & Kiasat, A.R. 2020. Characterization and strengthening of porous alumina-20 wt% zirconia ceramic composites. Ceramics International, 46(1), pp.893-902. Available at: https://doi.org/10.1016/j.ceramint.2019.09.047.

Udayakumar, A., Basha, M.R., Singh, S., Kumari, S.& Prasad, V.V.B. 2020. Carbon Fiber Reinforced Silicon Carbide Ceramic Matrix Composites. In: Mahajan, Y.&Roy, J. (Eds.) Handbook of Advanced Ceramics and Composites. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-73255-8_26-1.

Udayakumar, A., Basha, M., Stalin, M.& Prasad, V. 2014. Mechanical Properties of 3D Noninterlaced Cf/SiC Composites Prepared through Hybrid Process (CVI+PIP). World Academy of Science, Engineering and Technology, Open Science Index 93, International Journal of Materials and Metallurgical Engineering, 8(9), pp.1021-1028 [online]. Available at: https://publications. waset.org/9999514/mechanical-properties-of-3d-non interlaced- cf/sic-composites-prepared-through-hybrid-process-cvipip [Accessed: 25March 2024].

Venkatesan, K., Ramanathan, K., Vijayanandh, R., Selvaraj, S., Raj Kumar, G. & Senthil Kumar, M. 2020. Comparative structural Analysis of advanced multi-layer composite materials. Materials Today: Proceedings, 27(3), pp.2673-2687. Available at:https://doi.org/10.1016/j.matpr.2019.11.247.

Vijayakumar, S., Soundarrajan, M., Palanisamy, P. & Pasupathi, K.2016. Studies on Mechanical Properties of Al-Sic Metal Matrix Composite. SSRG International Journal of Material Science and Engineering, 2(3), pp.1-5 Available at: https://doi.org/10.14445/23948884/IJMSE-V2I6P101.

Xia, Y., Lu, Z., Cao, J., Miao, K., Li, J. & Li, D. 2019. Microstructure and mechanical property of Cf/SiC core/shell composite fabricated by direct ink writing. Scripta Materialia, 165, pp.84-88. Available at: https://doi.org/10.1016/j.scriptamat.2019.02.016.

Zhang, C., Ren, T., Zhang, X., Hu, W., Wang, Z., Wang, B. & Suo, T. 2020. Study of dynamic compressive behaviors of 2D C/SiC composites at elevated temperatures based on in-situ observation. Journal of the European Ceramic Society, 40(15), pp.5103-5119. Available at: https://doi.org/10.1016/j.jeurceramsoc.2020.06.036.

Zimmermann, A. & Rödel, J. 2004. Fracture Statistics Based on Pore/Grain-Size Interaction. Journal of the American Ceramic Society, 82(8), pp.2279-2281. Available at: https://doi.org/10.1111/j.1151-2916.1999.tb02080.x.

Published
2024/09/28
Section
Original Scientific Papers