Distinct features and validation of δ⋇-algebras: an analytical exploration

Keywords: δ⋇-algebra, Fuzzy algebra, Fuzzy logic, Fuzzy sets

Abstract


Introduction/purpose: This research introduces the concept of a δ⋇- algebra, a unique structure in the field of abstract algebra. The study aims to explore the defining features and distinct properties of δ⋇-algebras, distinguishing them from other algebraic systems and examining their interrelations with other types of algebras.

Methods: The methodology includes the formal definition and characterization of δ⋇-algebras, a comparative analysis with the existing algebraic structures, and an exploration of their interconnections. An algorithm is developed to verify whether a given structure meets the conditions of a δ⋇-algebra.

Results: The results reveal that δ⋇-algebras possess unique properties not found in other algebraic systems. The comparative study clarifies their distinctive place within the algebraic landscape and highlights significant interrelations with other structures. The verification algorithm proves effective in identifying δ⋇-algebras, providing a systematic approach for further study.

Conclusions: In conclusion, δ⋇-algebras represent a significant addition to abstract algebra, offering new theoretical insights and potential for future research. The study’s findings enhance the understanding of algebraic systems and their interconnections, opening new avenues for exploration in the field.

References

Ahn, S.S. & Kim, H.S. 1999. On QS-algebras. Journal of the Chungcheong Mathematical Society, 12(1), pp.33-41 [online]. Available at: https://koreascience.kr/article/JAKO199917069750921.page [Accessed: 15 May 2024].

Ahn, S.S. & Han, J.S. 2013 On BP-Algebras. Hacettepe Journal of Mathematics and Statistics, 42(5), pp.551-557 [online]. Available at: https://dergipark.org.tr/en/pub/hujms/issue/7746/101253 [Accessed: 15 May 2024].

Akram, M. & Kim, H.S. 2007. On K-algebras and BCI-algebras. International Mathematical Forum, 2(9-12), pp.583-587. Available at: https://doi.org/10.12988/imf.2007.07054.

Chandramouleeswaran, M., Muralikrishna, P., Sujatha, K. & Sabarinathan, S. 2017. A note on Z-algebra. Italian Journal of Pure and Applied Mathematics, 38, pp.707-714 [online]. Available at: https://ijpam.uniud.it/online_issue/201738/61- Chandramouleeswaran-Muralikrishna-Sujatha-Sabarinathan.pdf [Accessed: 15 May 2024].

Iséki, K., Kim, H.S. & Neggers, J. 2006. On J-algebras. Scientiae Mathematicae Japonicae, 63(3), pp.413-420 [online]. Available at: https://www.jams.or.jp/scm/contents/e-2006-3/2006-30.pdf [Accessed: 15 May 2024].

Iséki, K. & Tanaka, S. 1978. An introduction to the theory of BCK-algebras. Mathematica Japonica, 23(1), pp.1-26.

Jun, Y.B., Roh, E.H. & Kim, H.S. 1998. On BH-Algebras. Scientiae Mathemat- icae, 1(3), pp.347-354 [online]. Available at: https://www.jams.jp/scm/contents/Vol-1-3/1-3-12.pdf. [Accessed: 15 May 2024].

Kaviyarasu, M., Indhira, K. & Chandrasekaran, V.M. 2017. Introduction on INK- Algebras.International Journal of Pure and Applied Mathematics, 115(9), pp.1-9 [online]. Available at: https://acadpubl.eu/jsi/2017-115-9/articles/9/1.pdf [Ac- cessed: 15 May 2024].

Kim, C.B. & Kim, H.S. 2006. On BM-algebras. Scientiae Mathematicae Japo- nicae, 63(3), pp.215-221 [online]. Available at: https://www.jams.or.jp/scm/contents/e-2006-3/2006-22.pdf [Accessed: 15 May 2024].

Kim, C.B. & Kim, H.S. 2008. On BG-algebras. Demonstratio Mathematica, 41(3), pp.497-506. Available at: https://doi.org/10.1515/dema-2008-0303.

Kim, C.B. & Kim, H.S. 2012. On BO-algebras. Mathematica Slovaca, 62(5), pp.855-864. Available at: https://doi.org/10.2478/s12175-012-0050-9.

Kim, H.S. & Kim, Y.H. 2006. On BE-algebras. Scientiae Mathematicae Japo- nicae, 66(1), pp.1299-1302 [online]. Available at: https://www.jams.jp/scm/contents/e-2006-12/2006-120.pdf. [Accessed: 15 May 2024].

Kim, Y.H. & So, K.S. 2012. β-algebras and related topics.Communications of the Korean Mathematical Society, 27(2), pp.217-222. Available at: https://doi.org/10.4134/CKMS.2012.27.2.217.

Megalai, K. & Tamilarasi, A. 2010. TM-algebra - An Introduction. IJCA Special Issue on “Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications” CASCT, pp.17-23. Available at: https://doi.org/10.5120/996-29.

Meng, B.L. 2010. CI-algebras. Scientiae Mathematicae Japonicae, 71(1), pp.11-17. Available at: https://doi.org/10.32219/isms.71.1_11.

Neggers, J. & Kim, H.S. 1999. On d-algebras. Mathematica Slovaca, 49(1), pp.19-26 [online]. Available at: http://dml.cz/dmlcz/129981 [Accessed: 15 May 2024].

Neggers, J. & Kim, H.S. 2002a. On B-algebras. Matematički vesnik, 54(1-2), pp.21-29 [online]. Available at: https://scindeks.ceon.rs/article.aspx?artid=0025-51650202021N [Accessed: 15 May 2024].

Neggers, J. & Kim, H.S. 2002b. On β-algebras. Mathematica slovaca, 52(5), pp.517-530 [online]. Available at: http://dml.cz/dmlcz/131570 [Accessed: 15 May 2024].

Walendziak, A. 2007. On BF-algebras. Mathematica Slovaca, 57(2), pp.119-128. Available at: https://doi.org/10.2478/s12175-007-0003-x.

Published
2024/09/28
Section
Original Scientific Papers