Existence theorems for a unified interpolative Kannan contraction with an application on nonlinear matrix equations

Keywords: unified interpolative Kannan contraction, R-admissible, relational metric space

Abstract


Introduction/purpose: This paper established a new mathematical framework by uncovering the relationships between Kannan contractions and interpolative Kannan contractions. The concept of unified interpolative Kannan contractions was introduced in the framework of a relational metric space. Additionally, the study aimed to broaden the concept of alpha admissibility by incorporating specific relational metric ideas.

Methods: A detailed exploration of the properties and characteristics of Kannan contractions and interpolative Kannan contractions was conducted. The research introduced the concept of unified interpolative Kan- nan contractions and formulated new fixed point results for these mappings.

Result: The study successfully established fixed point results for unified interpolative Kannan contractions within the framework of relational metric spaces. Additionally, an application of these results to solve a problem concerning nonlinear matrix equations was provided, further emphasizing their significance.

Conclusion: The findings of this study significantly advanced the understanding of Kannan contractions and interpolative Kannan contractions, offering a unified framework for their analysis. The introduction of unified interpolative Kannan contractions and the expansion of alpha admissibility have broad implications for the field of mathematics.

References

Alam, A. & Imdad, M. 2015. Relation-theoretic contraction principle. Journal of Fixed Point Theory and Applications, 17, pp.693-702. Available at: https://doi.org/10.1007/s11784-015-0247-y.

Alam, A. & Imdad, M. 2017. Relation-theoretic metrical coincidence theorems. Filomat, 31(14), pp.4421-4439. Available at: https://doi.org/10.2298/FIL1714421A.

Alam, A. & Imdad, M. 2018. Nonlinear contractions in metric spaces under locally T -transitive binary relations. Fixed Point Theory, 19(1), pp.13-24. Available at: https://doi.org/10.24193/fpt-ro.2018.1.02.

Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French). Available at: https://doi.org/10.4064/fm-3-1-133-181.

Debnath, P., Konwar, N. & Radenović, S. 2021. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences. Springer Verlag, Singapore. Available at: https://doi.org/10.1007/978-981-16-4896-0.

Debnath, P., Mitrović, Z.D. & Radenović, S. 2020. Interpolative Hardy-Rogers and Reich-Rus-Ćirić type contractions in b-metric spaces and rectangular b-metric spaces. Matematički vesnik, 72(4), pp.368-374 [online]. Available at: https://www.vesnik.math.rs/landing.php?p=mv204.cap&name=mv20409 [Ac- cessed: 28 May 2024].

Hammad, H.A., Aydi, H. & Kattan, D.A. 2023. Hybrid interpolative mappings for solving fractional Navier–Stokes and functional differential equations. Boundary Value Problems, 2023, art.number:116. Available at: https://doi.org/10.1186/s13661-023-01807-1.

Jain, S. & Radenović, S. 2023. Interpolative fuzzy Z-contraction with its application to Fredholm non-linear integral equation. Gulf Journal of Mathematics, 14(1), pp.84-98. Available at: https://doi.org/10.56947/gjom.v14i1.1009.

Jain, S., Stojiljković, V.N. & Radenović, S.N. 2022. Interpolative generalised Meir-Keeler contraction. Vojnotehnički glasnik/Military Technical Courier, 70(4), pp.818-835. Available at: https://doi.org/10.5937/vojtehg70-39820.

Kannan, R. 1968. Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60, pp.71-76.

Karapinar, E. 2018. Revisiting the Kannan type Contractions via Interpolation. Advances in the Theory of Nonlinear Analysis and its Application, 2(2), pp.85-87. Available at: https://doi.org/10.31197/atnaa.431135.

Karapinar, E. 2021. Interpolative Kannan-Meir-Keeler type contraction. Ad- vances in the Theory of Nonlinear Analysis and its Application, 5(4), pp.611-614. Available at: https://doi.org/10.31197/atnaa.989389.

Karapinar, E., Agarwal, R. & Aydi, H. 2018a. Interpolative Reich–Rus–Ćirić Type Contractions on Partial Metric Spaces. Mathematics, 6(11), art.number:256. Available at: https://doi.org/10.3390/math6110256.

Karapinar, E., Alqahtani, O. & Aydi, H. 2018b. On Interpolative Hardy-Rogers Type Contractions. Symmetry, 11(1), art.number:8. Available at: https://doi.org/10.3390/sym11010008.

Karapinar, E., Fulga, A. & Yesilkaya, S.S. 2021. New Results on Perov- Interpolative Contractions of Suzuki Type Mappings. Journal of Function Spaces, 2021(1), art.number:9587604. Available at: https://doi.org/10.1155/2021/9587604.

Nazam, M., Aydi, H. & Hussain, A. 2023a. Existence theorems for (Ψ, Φ)- orthogonal interpolative contractions and an application to fractional differential equations. Optimization, 72(7), pp.1899-1929. Available at: https://doi.org/10.1080/02331934.2022.2043858.

Nazam, M., Javed, K. & Arshad, M. 2023b. The (Ψ, Φ)-orthogonal interpolative contractions and an application to fractional differential equations. Filomat, 37(4), pp.1167-1185. Available at: https://doi.org/10.2298/FIL2304167N.

Ran, A.C.M. & Reurings, M.C.B. 2002. On the nonlinear matrix equation X + A∗F (X)A = Q : solutions and perturbation theory. Linear Algebra and its Applications, 346(1-3), pp.15-26. Available at: https://doi.org/10.1016/S0024-3795(01)00508-0.

Samet, B., Vetro, C. & Vetro, P. 2012. Fixed point theorems for α–ψ-contractive type mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(4), pp.2154-2165. Available at: https://doi.org/10.1016/j.na.2011.10.014.

Published
2024/09/28
Section
Original Scientific Papers