Influence of confinement by transverse reinforcement on the nonlinear behaviour of reinforced concrete structures
Abstract
Introduction/purpose: Structural design and calculation are based on the behavior of concrete and steel separately, without taking into account the contribution of stirrups in concrete confinement. The influence of confinement in structural modeling can be used to better approximate real behavior. The purpose of this study is to develop and validate a non-linear model for the behavior of reinforced concrete structures, taking into account concrete confinement.
Methods: A 3D finite element model is used to analyze framed structures. This model takes into account shear deformations. The cross-section of the beam is discretized into trapezoidal layers, while each layer is assumed to be uniaxially stressed. Non-linear constitutive laws are applied to the materials. For concrete confinement, the material’s ductility is considered using the relationships proposed by Bouafia et al. These models are implemented in a computer program. The software monitors the behavior of column-beam structures under variable loads until reaching their load-bearing capacity.
Results: The results are compared with experiment results, focusing on maximum strength and deformability. The comparison shows very satisfactory results. In addition, the use of transverse reinforcement for concrete confinement significantly impacts the global behavior of reinforced concrete structures by influencing the contribution of ductility.
Conclusion: The consideration of confinement in structures provides the best possible approach to the real behavior of structures. In contrast to existing calculation codes, concrete behavior laws do not take into account the contribution of confinement by transverse reinforcement.
References
Adjrad, A. 2015. Modelisation non lineaire des structures triangulees composites. PhD Thesis. Tizi Ouzou, People's Democratic Republic of Algeria: University Mouloud Mammeri [online]. Available at: https://dspace.ummto.dz/handle/ummto/1242 [Accessed: 28 May 2024].
Ahmad, S.H. & Shah, S.P. 1982. Complete Triaxial Stress-Strain Curves for Concrete. Journal of the Structural Division, 108(4), pp.728-742. Available at: https://doi.org/10.1061/JSDEAG.0005921.
Bathe, K-J. 2006. Finite Element Procedures. New Jersey: Prentice-Hall. ISBN: 978-0-9790049-0-2.
Bentz, E.C. & Collins, M.P. 2000. Response-2000: Load-Deformation Response of Reinforced Concrete Sections [online]. Available at: https://ingenieriasismica.utpl.edu.ec/sites/default/files/publicaciones/UCG-ES-00012.pdf [Accessed: 28 May 2024].
Blume, J.A., Newmark, N.M. & Corning, L.H. 1961. Design of multistory reinforced concrete buildings for earthquake motions. Portland Cement Association.
Bouafia, Y. 1991. Résistance à l’effort tranchant des poutres en béton à precontrainte exterieure : étude experimentale et calcul à la rupture. PhD Thesis. Châtenay-Malabry, Ecole centrale de Paris [online]. Available at: http://www.theses.fr/1991ECAP0198 [Accessed: 28 May 2024].
Bouafia, Y., Iddir, A., Kachi, M.S. & Dumontet, H. 2014. Stress-Strain relationship for the confined concrete. In: 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, Spain, July 20 - 25 [online]. Available at: https://congress.cimne.com/iacm-eccomas2014/admin/files/fileabstract/a1410.pdf [Accessed: 28 May 2024].
Bratina, S., Saje, M. & Planinc, I. 2004. On materially and geometrically non-linear analysis of reinforced concrete planar frames. International Journal of Solids and Structures, 41(24-25), pp.7181-7207. Available at: https://doi.org/10.1016/j.ijsolstr.2004.06.004.
Buyukozturk, O. 1977. Nonlinear analysis of reinforced concrete structures. Computers & Structures, 7(1), pp.149-156. Available at: https://doi.org/10.1016/0045-7949(77)90069-4.
Canbolat, B.A., Parra-Montesinos, G.J. & Wight, J.K. 2005. Experimental Study on Seismic Behavior of High-Performance Fiber-Reinforced Cement Composite Coupling Beams. ACI Structural Journal, 102(1), pp.159-166. Available at: https://doi.org/10.14359/13541.
Chen, G., Teng, J.G. & Chen, J.-F. 2013. Shear Strength Model for FRP-Strengthened RC Beams with Adverse FRP-Steel Interaction. Journal of Composites for Construction, 17(1), pp.50-66. Available at: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000313.
Chung, H.-S., Yang, K.-H., Lee, Y.-H. & Eun, H.-C. 2002. Stress–strain curve of laterally confined concrete. Engineering structures, 24(9), pp.1153-1163. Available at: https://doi.org/10.1016/S0141-0296(02)00049-4.
Eltoft, T. & Lande, T. 2015. Nonlinear Analyses of RC Frames under Vertical and Horizontal Loading. Master’s Thesis. Trondheim, Torgarden, Norway: Norwegian University of Science and Technology - NTNU [online]. Available at: https://hdl.handle.net/11250/2351358 [Accessed: 28 May 2024].
Elwood, K.J. & Moehle, J.P. 2003. Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley [online]. Available at: https://peer.berkeley.edu/sites/default/files/0301_k._elwood_j._moehle.pdf [Accessed: 28 May 2024].
Espion, B. 1986. Contribution à l’analyse non linéaire des ossatures planes. Application aux structures en béton armé. PhD Thesis. Bruxelles: Université libre de Bruxelles, Faculté des sciences [online]. Available at: https://difusion.ulb.ac.be/vufind/Record/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213542/Details [Accessed: 28 May 2024].
-Eyrolles. 2000. Regles Bael 91 Modifiees 99. 3eme Edition: Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états-limites. Eyrolles. ISBN: 978-2212100235.
Grelat, A. 1978. Calcul non linéaire des ossatures en béton armé. PhD Thesis. Paris 6: Pierre and Marie Curie University - UPMC.
Hoshikuma, J., Kawashima, K., Nagaya, K. & Taylor, A.W. 1997. Stress-Strain Model for Confined Reinforced Concrete in Bridge Piers. Journal of Structural Engineering, 123(5), pp.624-633. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624).
Houde, M.-J. 2007. Modélisation de poutres en béton armé endommagées par chargements cycliques: comportement en flexion et en cisaillement. PhD Thesis. Québec, Canada: Université Laval, Faculty of Civil Science and Engineering, Department of Engineering [online]. Available at: https://library-archives.canada.ca/eng/services/services-libraries/theses/Pages/item.aspx?idNumber=1276807867 [Accessed: 28 May 2024].
Iddir, A. 2016. Modélisation des éléments de structure de section circulaire en béton armé confiné (Analyse de la fissuration). PhD Thesis. Tizi-Ouzou, Algeria: University Mouloud Mammeri, Faculty of Engineering and Construction, Department of Civil Engineering [online]. Available at: https://dspace.ummto.dz/server/api/core/bitstreams/0b664013-a868-4a03-9a0b-d50ad7b5b523/content [Accessed: 28 May 2024].
Kachi, M.S. 2006. Modélisation du comportement jusqu’à rupture des poutres à précontrainte extérieure. PhD Thesis. Tizi-Ouzou, Algeria: University Mouloud Mammeri, Faculty of Engineering and Construction, Department of Civil Engineering.
Kachi, M.S., Fouré, B., Bouafia, Y. & Muller, P. 2006. L’effort tranchant dans la modélisation du comportement jusqu’à rupture des poutres en béton armé et précontraint. Revue Européenne de Génie Civil, 10(10), pp.1235-1264. Available at: https://doi.org/10.1080/17747120.2006.9692914.
Kent, D.C. & Park, R. 1971. Flexural Members with Confined Concrete. Journal of the Structural Division, 97(7), pp.1969-1990. Available at: https://doi.org/10.1061/JSDEAG.0002957.
Kwon, M. & Spacone, E. 2002. Three-dimensional finite element analyses of reinforced concrete columns. Computers & Structures, 80(2), pp.199-212. Available at: https://doi.org/10.1016/S0045-7949(01)00155-9.
Lee, J.-Y., Lee, D.H., Lee, J.-E. & Choi, S.-H. 2015. Shear Behavior and Diagonal Crack Width for Reinforced Concrete Beams with High-Strength Shear Reinforcement. ACI Structural Journal, 112(3), pp.323-334. Available at: https://doi.org/10.14359/51687422.
Li, H., Li, X., Fu, J., Zhu, N., Chen, D., Wang, Y. & Ding, S. 2023. Experimental study on compressive behavior and failure characteristics of imitation steel fiber concrete under uniaxial load. Construction and Building Materials, 399, art.number:132599. Available at: https://doi.org/10.1016/j.conbuildmat.2023.132599.
Lu, Y., Liu, Z., Li, S. & Zhao, X. 2019. Effect of the Outer Diameter on the Behavior of Square RC Columns Strengthened with Self-Compacting Concrete Filled Circular Steel Tube. International Journal of Steel Structures, 19, pp.1042-1054.
Mander, J.B., Priestley, M.J.N. & Park, R. 1988. Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8), pp.1804-1826. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
Mattock, A.H. 1965. Rotational Capacity of Hinging Regions in Reinforced Concrete Beams, Flexural Mechanics of Reinforced Concrete. In: Proceedings of the ASCE-ACI Internatl. Symposium, Miami, Fl, USA, 12, pp.143-181, November 10-12 [online]. Available at: https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&id=16716 [Accessed: 28 May 2024].
Nait-Rabah, O. 1990. Simulation numérique du comportement non-linéaire des ossatures spatiales. PhD Thesis. Châtenay-Malabry, Ecole centrale de Paris [online]. Available at: https://theses.fr/1990ECAP0151 [Accessed: 28 May 2024].
Ngo, D. & Scordelis, A.C. 1967. Finite Element Analysis of Reinforced Concrete Beams. ACI Journal Proceedings, 64(3), pp.152-163. Available at: https://doi.org/10.14359/7551.
Park, R., Priestley, M.J.N. & Gill, W.D. 1982. Ductility of Square-Confined Concrete Columns. Journal of the Structural Division, 108(4), pp.929-950. Available at: https://doi.org/10.1061/JSDEAG.0005933.
Paultre, P. & Legeron, F. 2008. Confinement Reinforcement Design for Reinforced Concrete Columns. Journal of Structural Engineering, 134(5). Available at: https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(738).
Popovics, S. 1973. A numerical approach to the complete stress-strain curve of concrete. Cement and concrete research, 3(5), pp.583-599. Available at: https://doi.org/10.1016/0008-8846(73)90096-3.
Robert, F. 1999. Contribution à l’analyse non linéaire géométrique et matérielle des ossatures spatiales en Génie Civil : application aux ouvrages d’art. PhD thesis. Lyon, France: INSA - National Institute of Applied Sciences [online]. Available at: https://theses.fr/1999ISAL0032 [Accessed: 28 May 2024].
Roy, H.E.H. & Sozen, M.A. 1965. Ductility of Concrete. ACI Symposium Publication, 12, pp.213-235 [online]. Available at: https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/16718 [Accessed: 28 May 2024].
Rozman, M. & Fajfar, P. 2009. Seismic response of a RC frame building designed according to old and modern practices. Bulletin of Earthquake Engineering, 7(3), pp.779-799. Available at: https://doi.org/10.1007/s10518-009-9119-4.
Saatcioglu, M. & Razvi, S.R. 1992. Strength and Ductility of Confined Concrete. Journal of Structural engineering, 118(6), pp.1590-1607. Available at: https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590).
Sargin, M. 1971. Stress-strain Relationships for Concrete and the Analysis of Structural Concrete Sections. Waterloo, Ont: University of Waterloo, Solid Mechanics Division.
Scott, B.D., Park, R. & Priestley, M.J.N. 1982. Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates. ACI Journal Proceedings, 79(1), pp.13-27. Available at: https://doi.org/10.14359/10875.
Sheikh, S.A. & Uzumeri, S.M. 1982. Analytical Model for Concrete Confinement in Tied Columns. Journal of the Structural Division, 108(12), pp.2703-2722. Available at: https://doi.org/10.1061/JSDEAG.0006100.
Soliman, M.T.M. & Yu, C.W. 1967. The flexural stress-strain relationship of concrete confined by rectangular transverse reinforcement. Magazine of Concrete Research, 19(61), pp.223-238. Available at: https://doi.org/10.1680/macr.1967.19.61.223.
Spacone, E., Ciampi, V. & Filippou, F.C. 1992. Beam Element for Seismic Damage Analysis. Berkeley: University of California, College of Engineering, Earthquake Engineering Research Center, Report No. UCB/EERC-92/07 [online]. Available at: https://nehrpsearch.nist.gov/article/PB95-192126/XAB [Accessed: 28 May 2024].
Spacone, E., Filippou, F.C. & Taucer, F.F. 1996. Fibre beam–column model for non-linear analysis of R/C frames: Part I. Formulation. Earthquake Engineering & Structural Dynamics, 25(7), pp.711-725. Available at: https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9.
Tang, H., Liu, R., Zhao, X., Guo, R. & Jia, Y. 2021. Axial compression behavior of CFRP-confined rectangular concrete-filled stainless steel tube stub column. Frontiers of Structural and Civil Engineering, 15, pp.1144-1159. Available at: https://doi.org/10.1007/s11709-021-0762-4.
Vecchio, F.J. & Collins, M.P. 1986. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Journal Proceedings, 83(2), pp.219-231. Available at: https://doi.org/10.14359/10416.
Vecchio, F.J. & Shim, W. 2004. Experimental and Analytical Reexamination of Classic Concrete Beam Tests. Journal of Structural Engineering, 130(3), pp.460-469. Available at: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(460).
Yalcin, C. & Saatcioglu, M. 2000. Inelastic analysis of reinforced concrete columns. Computers & Structures, 77(5), pp.539-555. Available at: https://doi.org/10.1016/S0045-7949(99)00228-X.
Zienkiewicz, O.C. & Taylor, R.L. 2005. The Finite Element Method for Solid and Structural Mechanics, 6th Edition. Butterworth-Heinemann. ISBN: 9780750663212.
Copyright (c) 2024 Adnane Ourabah, Youcef Bouafia, Abdelkader Iddir, Mohand Said Kachi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).