Multi-valued mappings on Pompeiu-Hausdorff fuzzy b-metric spaces and a common fixed point result

Keywords: fuzzy metric space, fuzzy b-metric space, t-norm, fixed point, implicit relation

Abstract


Introduction/purpose: The study of the theory of fuzzy sets was prompted by the presence of uncertainty as an essential part of real-world problems, leading Zadeh to address the problem of indeterminacy. The notion of fuzzy logic was introduced by Zadeh. Unlike traditional logic theory, where an element either belongs to the set or does not, in fuzzy logic, the affiliation of the element to the set is expressed as a number from the interval [0, 1].

Methods: The theory of a fixed point in fuzzy metric spaces can be viewed in different ways, one of which involves the use of fuzzy logic. Fuzzy metric spaces, which are specific types of topological spaces with pleasing ”geometric” characteristics, possess a number of appealing properties and are commonly used in both pure and applied sciences. Metric spaces and their various generalizations frequently occur in computer science applications. For this reason, a new space called a Pompeiu-Hausdorff fuzzy b-metric space is constructed in this paper.

Results: In this space, some new fixed point results are also formulated and proven. Additionally, a general common fixed point theorem for a pair of multi-valued mappings in Pompeiu-Hausdorff fuzzy b-metric spaces is investigated. The findings obtained in fuzzy metric spaces, such as those discussed in the article of Shen, Y. et al. (2012. Fixed point theorems in fuzzy metric spaces. Applied Mathematics Letters, 25, pp.138-141), are generalized by the results in this paper, and additional specific findings are produced and supported by examples.

Conclusions: The study of denotational semantics and their applications in control theory using fuzzy b-metric spaces and Pompeiu-Hausdorff fuzzy b-metric spaces will be an important next step.

References

Aghajani, A., Abbas, M. & Roshan, J.R. 2014. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Mathematica Slovaca, 64, pp. 941–960. Available at: https://doi.org/10.2478/s12175-014-0250-6.

Aydi, H., Bota, M., Karapinar, E. & Mitrović, S. 2012. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory and Applications, 2012, art.number:88. Available at: https://doi.org/10.1186/1687-1812-2012-88.

Bakhtin, I. 1989. The contraction mapping principle in quasimetric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30, pp. 26–37.

Bota, M., Molnár, A. & Varga, C. 2011. On Ekeland’s Variational Principle in b-Metric Spaces. Fixed Point Theory, 12(1), pp. 21–28 [online]. Available at: https://www.math.ubbcluj.ro/~nodeacj/vol__12(2011)_no_1.php [Accessed: 5 June 2024].

Czerwik, S. 1993. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), pp. 5–11 [online]. Available at: https://dml.cz/handle/10338.dmlcz/120469 [Accessed: 5 June 2024].

Dahhouch, M., Makran, N. & Marzouki, B. 2024. A generalized fixed point theorem in fuzzy b-metric spaces and applications. Boletim da Sociedade Paranaense de Matemática, 42, pp. 1–7 [online]. Available at: https://doi.org/10.5269/bspm.63276.

Došenović, T., Rakić, D., Radenović, S. & Carić, B. 2023. Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Mathematics, 8(1), pp. 2154–2167. Available at: https://doi.org/10.3934/math.2023111.

George, A. & Veeramani, P. 1997. On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), pp. 365–368. Available at: https://doi.org/10.1016/S0165-0114(96)00207-2.

Hassanzadeh, Z. & Sedghi, S. 2018. Relation between b-metric and fuzzy metric spaces. Mathematica Moravica, 22(1), pp. 55–63. Available at: https://doi.org/10.5937/MatMor1801055H.

Kramosil, I. & Michalek, J. 1975. Fuzzy Metrics and Statistical Metric Spaces. Kybernetica, 11(5), pp. 326–334 [online]. Available at: https://www.kybernetika.cz/content/1975/5/336/paper.pdf [Accessed: 5 June 2024].

Makran, N., El Haddouchi, A. & Marzouki, B. 2023. A generalized common fixed point of multi-valued maps in b-metric space. Boletim da Sociedade Paranaense de Matemática, 41, pp. 1–9. Available at: https://doi.org/10.5269/bspm.51655.

Rakić, D., Mukheimer, A., Došenović, T., Mitrović, Z. & Radenović, S. 2020. On some new fixed point results in fuzzy b-metric spaces. Journal of Inequalities and Applications, 2020, art.number:99. Available at: https://doi.org/10.1186/s13660-020-02371-3.

Sedghi, S. & Shobe, N. 2012. Common fixed point theorem in b-fuzzy metric space. Nonlinear Functional Analysis and Applications (NFAA), 17(3), pp. 349–359 [online]. Available at: http://nfaa.kyungnam.ac.kr/journal-nfaa/index.php/NFAA/article/view/38 [Accessed: 5 June 2024].

Sedghi, S. & Shobe, N. 2014. Common fixed point theorem for R-weakly commuting maps in b-fuzzy metric space. Nonlinear Functional Analysis and Applications (NFAA), 19(2), pp. 285–295 [online]. Available at: http://nfaa.kyungnam.ac.kr/journal-nfaa/index.php/NFAA/article/view/238 [Accessed: 5 June 2024].

Shen, Y., Qiu, D. & Chen, W. 2012. Fixed point theorems in fuzzy metric spaces. Applied Mathematics Letters, 25(2), pp. 138–141. Available at: https://doi.org/10.1016/j.aml.2011.08.002.

Published
2025/02/01
Section
Original Scientific Papers