Models of microeconomic dynamics: bifurcations and complex system behavior algorithms

Keywords: dynamics of the supply-demand system, time lag, limit cycle, bifurcation, chaos

Abstract


Introduction/purpose: Studying the dynamics of the mutual influence of supply and demand is relevant in connection with the financial losses that arise due to uncertainty in demand and forecast errors. The work aims to build a mathematical model of the dynamics of this interaction for the market of one product.

Methods: The paper proposes a mathematical model of the states of the supply-demand system, within the framework of which the processes occurring in this system are considered from the perspective of the methodology of economic synergetics. The mathematical model of dynamics has the form of a system of two differential equations with quadratic nonlinearity.

Results: The use of the proposed model to reproduce various dynamic states of market self-regulation processes made it possible to identify the hierarchy of transition from stable dynamic regimes to unstable ones with the appearance of corresponding bifurcations. The main attention was paid to studying the behavior of the system at the boundaries of the stability region.

Conclusion: The existence of a saddle-node bifurcation of limit cycles has been revealed, which suggests the appearance of stable self-oscillations in the case of a “soft” cycle and unstable ones in the case of a “hard” cycle. When studying a bifurcation of codimension two - “double zero” - special dynamic structures were discovered, determined by the properties of global bifurcations. This type of behavior is characterized by self-oscillations with a low frequency, which gives rise to the so-called “ultra-long waves” of the economic state.

References

Arena, R. & Caldari, K. 2024. Léon Walras and Alfred Marshall: microeconomic rational choice or human and social nature? Cambridge Journal of Economics, 48(3), pp.369-396. Available at: https://doi.org/10.1093/cje/beae005.

Cai, J. P. 2005. Hopf bifurcation in the IS-LM business cycle model with time delay. Electronic Journal of Differential Equations. 2005(15), pp.1-6. Available at: https://ejde.math.txstate.edu/Volumes/2005/15/cai.pdf.

Carr, J. 1982. Applications of Centre Manifold Theory. New York: Springer. Available at: https://doi.org/10.1007/978-1-4612-5929-9.

Chen, Q., Kumar, P. & Baskonus, H.M. 2024. Modeling and analysis of demand-supply dynamics with a collectability factor using delay differential equations in economic growth via the Caputo operator. AIMS Mathematics, 9(3), pp.7471-7491. Available at: https://doi.org/10.3934/math.2024362.

Davar, E. 2015. Is Walras’s Theory So Different From Marshall’s? Journal of Social Science Studies, 2(1), pp.64-86. Available at: https://doi.org/10.5296/jsss.v2i1.6234.

Davizón, Y.A., Amillano-Cisneros, J.M., Leyva-Morales, J.B., Smith, E.D., Sanchez-Leal, J. & Smith, N.R. 2023. Mathematical Modeling of Dynamic Supply Chains Subject to Demand Fluctuations. Engineering, Technology & Applied Science Research, 13(6), pp.12360-12365. Available at: https://doi.org/10.48084/etasr.6491.

Dilenko, V.O. & Tarakanov, N.L. 2020. Mathematical Modeling of the Equilibrium Price Formation Taking into Account the Logistic Factor. Business Inform, 7, pp.125-130. Available at: https://doi.org/10.32983/2222-4459-2020-7-125-130.

Donzelli, F. 2008. Marshall vs. Walras on Equilibrium and Disequilibrium. History of Economics Review, 48(1), pp.1-38. Available at: https://doi.org/10.1080/18386318.2008.11682129.

Dorokhov, A., Lebedeva, I., Malyarets, L. & Voronin, A. 2023. Non-linear model of the macroeconomic system dynamics: multiplier-accelerator. Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science, 3(65), pp.181-200. Available at: https://doi.org/10.31926/but.mif.2023.3.65.2.16.

Elkarmouchi, M., Lasfar, S., Hattaf, K. & Yousfi, N. 2024. Mathematical analysis of a spatiotemporal dynamics of a delayed IS-LM model in economics. Mathematical Modeling and Computing, 11(1), pp.189-202. Available at: https://doi.org/10.23939/mmc2024.01.189.

Fu, N., Geng, L., Ma, J. & Ding, X. 2023. Price, Complexity, and Mathematical Model. Mathematics, 11(13), art.number:2883. Available at: https://doi.org/10.3390/math11132883.

Golubitsky, M. & Langford, W.F. 1981. Classification and unfoldings of degenerate Hopf bifurcation. Journal of Differential Equations, 41(3), pp.375-415. Available at: https://doi.org/10.1016/0022-0396(81)90045-0.

Guckenheimer, J. & Holmes, P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer. Available at: https://doi.org/10.1007/978-1-4612-1140-2.

Hassard, B.D., Kazarinoff, N.D., & Wan, Y.-H. 1981. Theory and Applications of Hopf Bifurcation. Chembridge: Chembridge University Press. ISBN: 9780521231589

Hattaf, K., Riad, D. & Yousfi, N.A. 2017. Generalized business cycle model with delays in gross product and capital stock. Chaos, Solitons & Fractals. 98, pp.31-37. Available at: https://doi.org/10.1016/j.chaos.2017.03.001.

He, J.-H. 2018. Fractal calculus and its geometrical explanation. Results in Physics, 10, pp.272-276. Available at: https://doi.org/10.1016/j.rinp.2018.06.011.

He, J.-H., He, C.-H. & Sedighi, H.M. 2021. Evans model for dynamic economics revised. AIMS Mathematics, 6(9), pp.9194-9206. Available at: https://doi.org/10.3934/math.2021534.

Kopell, N. & Howard, L.N. 1975. Bifurcations and trajectories joining critical points. Advances in Mathematics, 18(3), pp.306-358. Available at: http://doi.org/10.1016/0001-8708(75)90048-1.

Kuznetsov, Y.A. 2023. Elements of Applied Bifurcation Theory. Cham: Springer. Available at: https://doi.org/10.1007/978-3-031-22007-4.

Le, L.B., Konishi, K. & Hara, N. 2012. Design and experimental verification of multiple delay feedback control for time delay nonlinear oscillators. Nonlinear Dynamics, 67, pp.1407-1418. Available at: https://doi.org/10.1007/s11071-011-0077-4.

Levi, A., Sabuco, J. & Sanjuán, M.A.F. 2018. Supply based on demand dynamical model. Communications in Nonlinear Science and Numerical Simulation, 57, pp.402-414. Available at: https://doi.org/10.1016/j.cnsns.2017.10.008.

Li, C. & Ma, Z. 2020. Dynamics Analysis of a Mathematical Model for New Product Innovation Diffusion. Discrete Dynamics in Nature and Society, 2020(1), art.number:4716064. Available at: https://doi.org/10.1155/2020/4716064.

Li, T., Wang, Y. & Zhou, X. 2019. Bifurcation analysis of a first time-delay chaotic system. Advances in Continuous and Discrete Models, 2019, art.number:78. Available at: https://doi.org/10.1186/s13662-019-2010-y.

Liao, X., Guo, S. & Li, C. 2007. Stability and bifurcation analysis in tri-neuron model with time delay. Nonlinear Dynamics, 49, pp.319-345. Available at: https://doi.org/10.1007/s11071-006-9137-6.

Nahorski, Z. & Ravn, H.F. 2000. A review of mathematical models in economic environmental problems. Annals of Operations Research, 97, pp.165-201. Available at: https://doi.org/10.1023/A:1018913316076.

Pomin, М. 2018. Economic dynamics and the calculus of variations in the interwar period. Journal of the History of Economic Thought, 40(1), pp.57-79. Available at: https://doi.org/10.1017/S1053837217000116.

Takens, F. 1974. Singularities of vector fields. Publications Mathématiques de l'IHÉS, 43, pp.47-100 [online]. Available at: http://eudml.org/doc/103931 [Accessed: 14. July 2024].

Voronin, A.V. & Chernyshov, S.I. 2007. Cycles in Nonlinear Macroeconomics. arXiv:0706.1013, 7 June. Available at: https://doi.org/10.48550/arXiv.0706.1013.

Voronin, A., Lebedeva, I. & Lebedev, S. 2020. Dynamics of formation of transitional prices on the chain of sequential markets: analytical model. Economics of Development, 21(1), pp.25-36. Available at: https://doi.org/10.57111/econ.21(1).2022.25-35.

Wei, J. & Yu, C. 2011. Stability and bifurcation analysis in the cross-coupled laser model with delay. Nonlinear Dynamics, 66, pp.29-38. Available at: https://doi.org/10.1007/s11071-010-9908-y.

Zabolotnii, S. & Mogilei, S. 2023. Modifications of Evans Price Equilibrium Model. IAPGOŚ Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(1), pp.58-63. Available at: https://doi.org/10.35784/iapgos.3507.

Published
2024/11/17
Section
Original Scientific Papers