Solving a damped spring-mass system via the MA-simulation function

Keywords: fuzzy metric space, M-Cauchy sequence, fixed points, MA-simulation function

Abstract


Introduction/purpose: In an interesting article, Perveen & Imdad (2019) introduced the notion of an MA-simulation function, and utilized it to prove the existence of a fixed point for a self mapping through α-admisibilty and the continuity of the self-map in a fuzzy metric space. The purpose of this paper is to establish a unique fixed point theorem for an MA-contractive mapping by relaxing the condition of continuity and α-admissibilty of the map in a fuzzy metric space. As an application of our result, we study the existence and uniqueness of the solution to the damped spring-mass system. The article includes an example which shows the validity of our results.

Methods: The fixed point method with an MA-simulation function was used.

Results: A unique fixed point for a self map in a fuzzy metric space is obtained.

Conclusions: A fixed point of the self maps is obtained without the continuity and α-admissibility of the self map via the MA-simulation function. Also, the existence and uniqueness of the solution of a damped spring-mass system in the setting of a fuzzy metric space is obtained.

References

George, A. & Veeraman, P. 1994. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), pp.395-399. Available at: https://doi.org/10.1016/0165-0114(94)90162-7.

Grabiec, M. 1988. Fixed points in fuzzy meric spaces. Fuzzy Sets and Systems, 27(3), pp.385-389. Available at: https://doi.org/10.1016/0165-0114(88)90064-4.

Gregori, V. & Miñana, J.-J. 2014. Some remarks on fuzzy contractive mappings. Fuzzy Sets and Systems, 251, pp.101-103. Available at: https://doi.org/10.1016/j.fss.2014.01.002.

Gregori, V. & Sapena, A. 2002. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2), pp.245-252. Available at: https://doi.org/10.1016/S0165-0114(00)00088-9.

Jain, S., Jain, S & Jain, L.B. 2009. Compatible mappings of type (β) and weak compatibility in fuzzy metric spaces. Mathematica Bohemica, 134(2), pp.151-164. Available at: https://doi.org/10.21136/MB.2009.140650.

Khojasteh, F., Shukla, S. & Radenović, S. 2015. A new approach to the study of fixed point theory for simulation functions. Filomat, 29(6), pp.1189-1194. Available at: https://doi.org/10.2298/FIL1506189K.

Kramosil, I. & Michálek, J. 1975. Fuzzy metrics and statistical metric spaces. Kybernetica, 11(5), pp.336-344 [online]. Available at: http://dml.cz/dmlcz/125556 [Accessed: 02 September 2024].

Mihet, D. 2008. Fuzzy ψ-contractive mappings in non-Archimedean fuzzy met- ric spaces. Fuzzy Sets and Systems, 159(6), pp.739-744. Available at: https://doi.org/10.1016/j.fss.2007.07.006.

Mihet, D. 2010. A class of contractions in fuzzy metric spaces. Fuzzy Sets and Systems, 161(8), pp.1131-1137. Available at: https://doi.org/10.1016/j.fss.2009.09.018.

Perveen, A. & Imdad, M. 2019. Proving new fixed point results in fuzzy metric spaces employing simulation function. Journal of Intelligent and Fuzzy Systems, 36(6), pp.6493-6501. Available at: https://doi.org/10.3233/JIFS-182873.

Saha, P., Choudhury, B.S. & Das, P. 2016. Weak Coupled Coincidence Point Results Having a Partially Ordering in Fuzzy Metric Spaces. Fuzzy Information and Engineering, 8(2), pp.199-216. Available at: https://doi.org/10.1016/j.fiae.2016.06.005.

Schweizer, B. & Sklar, A. 1983. Probabilistic Metric Spaces. Mineola, New York: Dover Publications. Inc. ISBN: 0-486-44515-3.

Tirado, P. 2012. Contraction mappings in fuzzy quasi-metric spaces and [0, 1]- fuzzy posets. Fixed Point Theory, 13(1), pp.273-283 pp.273-283 [online]. Available at: https://www.math.ubbcluj.ro/~nodeacj/vol_13(2012) no1.php [Accessed: 02 September 2024].

Wardowski, D. 2013. Fuzzy contractive mappings and fixed points in fuzzy met- ric spaces. Fuzzy Sets and Systems, 22, pp.108-114. Available at: https://doi.org/10.1016/j.fss.2013.01.012.

Zadeh, L.A. 1965. Fuzzy Sets. Information and Control, 8(3), pp.338-353. Avail- able at: https://doi.org/10.1016/S0019-9958(65)90241-X.

Published
2025/03/28
Section
Original Scientific Papers