Analytical investigation of the interfacial behavior of a prestressed concrete beam strengthened with a prestressed FRP-bonded plate

  • Hanane Mebsout Mustapha Stambouli University, Mascara, People's Democratic Republic of Algeria https://orcid.org/0009-0003-5837-4144
  • Mohamed Atif Benatta University of Djillali Liabes, Structures and Advanced Materials in Civil Engineering and Public Works Laboratory (LSMAGCTP), Sidi Bel Abbes, People's Democratic Republic of Algeria https://orcid.org/0009-0007-5854-9054
  • Baghdad Krour University of Djillali Liabes, Structures and Advanced Materials in Civil Engineering and Public Works Laboratory (LSMAGCTP), Sidi Bel Abbes, People's Democratic Republic of Algeria https://orcid.org/0000-0002-8265-9807
  • Oussama Benachour University of Djillali Liabes, Structures and Advanced Materials in Civil Engineering and Public Works Laboratory (LSMAGCTP), Sidi Bel Abbes, People's Democratic Republic of Algeria https://orcid.org/0009-0003-3792-7424
  • Mohamed Bachir Bouiadjra University of Djillali Liabes, Structures and Advanced Materials in Civil Engineering and Public Works Laboratory (LSMAGCTP), Sidi Bel Abbes, People's Democratic Republic of Algeria + Thematic Agency for Research in Science and Technology, Algiers, People's Democratic Republic of Algeria https://orcid.org/0009-0008-4814-6187
  • Nacer Rahal Mustapha Stambouli University, Department of Civil Engineering, Mascara, People's Democratic Republic of Algeria + University of Sciences and Technology, Laboratory of Mechanical Structure and Construction Stability, Oran, People's Democratic Republic of Algeria https://orcid.org/0009-0002-0400-8360
Keywords: prestressed concrete beam, FRP composites, interfacial stresses, fibers orientations, strengthening

Abstract


Introduction/purpose: Utilizing composite materials to reinforce reinforced concrete structures is now a very prevalent practice in the field of civil engineering. However, prestressed concrete construction does not usually use this method. The principal purpose of the present study is to extend the use of composite materials to reinforce prestressed concrete beams by taking into account the effect of interfacial stresses concentration on the global behavior of such structures.

Methods: A new analytical model is suggested taking into account how changes in the RC beam's prestress affect the interface stresses. A polynomial function expressing the variation of the geometrical shape of the cable as well as the instantaneous and non-instantaneous losses of the prestressed concrete beam is considered in order to address the issue of stress concentration at the adhesive-plate-concrete interface. 

Results: The main findings of the present investigation demonstrate that, in the presence of cable prestress, the interface stresses decrease non-significantly; but, as the prestressing force applied to the FRP plate increases, a more substantial increase of interfacial stresses is observed. 

Conclusion: Because of a high degree of contact stresses at the plate end the debonding risk becomes greater and an anchoring mechanism is recommended at the edge of the plate.

References

Al-Emrani, M. & Kliger, R. 2006. Analysis of interfacial shear stresses in beams strengthened with bonded prestressed laminates. Composites. Part B: Engineering, 37(4-5), pp.265-272. Available at: https://doi.org/10.1016/j.compositesb.2006.01.004.

Aslam, M., Shafigh, P., Jumaat, M.Z. & Shah, S.N.R. 2015. Strengthening of RC beams using prestressed fiber reinforced polymers – A review. Construction and Building Materials, 82, pp.235-256. Available at: https://doi.org/10.1016/j.conbuildmat.2015.02.051.

Bansal, P.P., Sharma, R. & Mehta, A. 2016. Retrofitting of RC girders using pre-stressed CFRP sheets. Steel and Composite Structures, 20(4), pp.833-849. Available at: https://doi.org/10.12989/scs.2016.20.4.833.

Benachour, A., Benyoucef, S., Tounsi, A. & Adda bedia, E.A. 2008. Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate. Engineering Structures, 30(11), pp.3305-3315. Available at: https://doi.org/10.1016/j.engstruct.2008.05.007.

Benali, K., Krour, B., Atif Benatta, M., Hafid, K., Bachir Bouiadjra, M., Mechab, I. & Bernard, F. 2023. Investigation of dynamic behavior of prestressed FRP plate intended for strengthening prestressed RC beam. Engineering structures, 280, art.number:115690. Available at: https://doi.org/10.1016/j.engstruct.2023.115690.

Emdad, M.R. & Al-Mahaidi, R. 2015. Effect of prestressed CFRP patches on crack growth of centre-notched steel plates. Composite Structures, 123, pp.109-122. Available at: https://doi.org/10.1016/j.compstruct.2014.12.007.

Fahsi, B., Benrahou, K.-H., Krour, B., Tounsi, A., Benyoucef, S. & Bedia, E.A.A. 2011. Analytical analysis of interfacial stresses in FRP-RC hybrid beams with time-dependent deformations of RC beam. Acta Mechanica Solida Sinica, 24(6), pp.519-526. Available at: https://doi.org/10.1016/s0894-9166(11)60052-9.

-Fib-international. 1990. CEB-FIP Model Code 1990 - 1st Draft - Vol. 1, chapters 1-5. FIB - International Federation for Structural Concrete [online]. Available at: https://www.fib-international.org/publications/ceb-bulletins/ceb-fip-model-code-1990,-first-draft-vol-1-pdf-detail.html [Accessed: 15 October 2024].

Herakovich, C.T. 1997. Mechanics of Fibrous Composites. Wiley. ISBN: 978-0-471-10636-4.

Krour, B., Bernard, F. & Tounsi, A. 2013. Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical–numerical investigation. Engineering Structures, 56, pp.218-227. Available at: https://doi.org/10.1016/j.engstruct.2013.05.008.

Krour, B., Tounsi, A., Benyoucef, S. & Adda Bedia, E.A. 2010. An improved closed-form solution to interfacial stresses in rc beams strengthened with a composite plate. Mechanics of Composite Materials, 46(3), pp.331-340. Available at : https://doi.org/10.1007/s11029-010-9150-1.

Krour, B., Tounsi, A. & Meftah, S.A. 2011. A New Approach for Adhesive Stress Analysis of a Beam Bonded with Composite Plate Having Variable Fiber Spacing. Composite Interfaces, 18(2), pp.135-149. Available at https://doi.org/10.1163/092764411x567413.

Le Delliou, P. 2003. Béton précontraint aux Eurocodes. Presses Universitaires Lyon. ISBN: 978-2729707248.

Lou, T. & Karavasilis, T.L. 2018. Time-dependent assessment and deflection prediction of prestressed concrete beams with unbonded CFRP tendons. Composite Structures, 194, pp.365-376. Available at: https://doi.org/10.1016/j.compstruct.2018.04.013.

Mebsout, H., Krour, B. & Bachir Bouiadjra, M. 2018. Enhacing Pre-stressed Concrete Beam’s Capacity Using Externally Bonded Pre-stressed Composite Plate. In: Abdelbaki, B., Safi, B. & Saidi, M. (Eds.) Proceedings of the Third International Symposium on Materials and Sustainable Development. SMSD 2017. Cham: Springer, pp.95-104. Available at: https://doi.org/10.1007/978-3-319-89707-3_12.

Mohamed, B.B., Abdelouahed, T., Samir, B. & El Abbas, A.B. 2009. Approximate analysis of adhesive stresses in the adhesive layer of plated RC beams. Computational Materials Science, 46(1), pp.15-20. Available at: https://doi.org/10.1016/j.commatsci.2009.01.020.

Mostakhdemin Hosseini, M.R., Dias, S.J.E. & Barros, J.A.O. 2016. Flexural strengthening of reinforced low strength concrete slabs using prestressed NSM CFRP laminates. Composites Part B: Engineering, 90, pp.14-29. Available at: https://doi.org/10.1016/j.compositesb.2015.11.028.

Páez, P.M. 2023. A simplified approach to determine the prestress loss and time-dependent deflection in cracked prestressed concrete members, prestressed with fiber reinforced polymers or steel tendons. Engineering Structures, 279, art.number:115523. Available at: https://doi.org/10.1016/j.engstruct.2022.115523.

Páez, P.M. & Sensale-Cozzano, B. 2021. Time-dependent analysis of simply supported and continuous unbonded prestressed concrete beams. Engineering Structures, 240, art.number:112376. Available at: https://doi.org/10.1016/j.engstruct.2021.112376.

Rezazadeh, M., Barros, J. & Costa, I. 2015. Analytical approach for the flexural analysis of RC beams strengthened with prestressed CFRP. Composites Part B: Engineering, 73, pp.16-34. Available at:

https://doi.org/10.1016/j.compositesb.2014.12.016.

Smith, S.T. & Teng, J.G. 2001. Interfacial stresses in plated beams. Engineering Structures, 23(7), pp.857-871. Available at: https://doi.org/10.1016/s0141-0296(00)00090-0.

Tounsi, A. & Benyoucef, S. 2007. Interfacial stresses in externally FRP-plated concrete beams. International Journal of Adhesion and Adhesives, 27(3), pp.207-215. Available at: https://doi.org/10.1016/j.ijadhadh.2006.01.009.

Tounsi, A., Hassaine Daouadji, T., Benyoucef, S. & Adda bedia, E.A. 2009. Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations. International Journal of Adhesion and Adhesives, 29(4), pp.343-351. Available at: https://doi.org/10.1016/j.ijadhadh.2008.06.008.

Zhang, H., Guo, Q.-Q. & Xu, L.-Y. 2023. Prediction of long-term prestress loss for prestressed concrete cylinder structures using machine learning. Engineering Structures, 279, art.number:115577. Available at: https://doi.org/10.1016/j.engstruct.2022.115577.

Published
2025/03/28
Section
Original Scientific Papers