Impact of electrolytic hydrogen charging on the mechanical properties and microstructure of AISI 304 austenitic stainless steel

  • Amar Abboub Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Mechanical Engineering, Mascara, People's Democratic Republic of Algeria
  • Ahmed ABOURA Ahmed Zabana University, Faculty of Sciences and Technology, Department of Mechanical Engineering, People's Democratic Republic of Algeria.
  • Khaled BENMAHDI Mustapha Stambouli University, Faculty of Science and Technology, Department of Civil Engineering, Mascara, Algeria
  • Mohamed SADOUN Mustapha Stambouli University, Faculty of Science and Technology, Department of Civil Engineering, Mascara, Algeria
  • Mohamed boukhelef Mustapha Stambouli University, Faculty of Science and Technology, Department of Civil Engineering, Mascara, Algeria
Keywords: AISI304 Stainless steel, Heat treatment, Mechanical properties, Hydrogen charged, Hydrogen embrittlement, Microstructure.

Abstract


Introduction/purpose: Hydrogen embrittlement (HE) substantially decreases the mechanical properties of austenitic stainless steels, constraining their efficacy in diverse applications. This study examines the impact of electrolytic hydrogen charging on the mechanical characteristics and microstructure of AISI 304 stainless steel, a commonly utilized grade.

 Methods: Tensile specimens measuring 8 mm in diameter were produced through machining and subjected to hydrogen loading electrolytically at different times in a glass chamber containing sulfuric acid (H2SO4) at 0.05M. Mechanical tests were conducted using a Karl Frank GMBH tensile testing universal machine type: 83431. The samples underwent microscopic analysis using optical microscopy (OM), x-ray diffraction (DRX), and scanning electron microscopy (SEM). The experimental characterization involved producing cylindrical specimens, which underwent heat treatments (austenization) ranging from quenching to tempering, followed by immersion in a cold heat treatment cycle at -196°C for 35 minutes. Hydrogen pre-loading was carried out electrochemically-hydrogen charged for different loading times in hours.

Results: Results showed that the effects of hydrogen embrittlement (HE) on AISI304 stainless steel are characterized by a decrease in ductility, sometimes undergoing sudden embrittlement. This phenomenon is consistent with other authors who have demonstrated a loss of ductility due to the martensitic transformation of austenite caused by deformation and hydrogen diffusion.

Conclusion: Inclusions, such as second-phase particles, carbide precipitates, inclusions of small, medium, or large size, interfaces, and interphases, can be considered inclusions. Their mechanical properties and hydrogen transport and segregation mechanisms differ from those of the matrix, particularly in martensitic structures. The observation of optical dark area (ODA) and black spots indicates that hydrogen is concentrated either in the molecular form H2 or combined with Sulphur in the form H2S.

References

Abboub, A. 2023. The Effect of cryogenic heat treatments on the mechanical behavior of hydrogen filled steels. International Journal of Advanced Sicentific Research and Innovation (IJASRI) Egypt. Available at: https://www.academia.edu/121805278/The_Effect_of_cryogenic_heat_treatments_on_the_mechanical_behavior_of_hydrogen_filled_steels 11 August 2024.

Abboub, A., Aboura, A., Benmahdi, K., Sadoun, M., Belkacem, M., Semsoum, D. 2024. Mechanical behaviour of austenitic stainless steel loaded in the aqueous solution of H2SO4 during tensile testing, VOJNOTEHNIČKI GLASNIK / MILITARY TECHNICAL COURIER, 72(4): 992–2011, Available at: https://doi.org/10.5937/vojtehg72-49964

Bach, A.-C. 2018. Etude du piégeage de l’hydrogène dans un acier inoxydable austénitique dans le cadre de la corrosion sous contrainte assistée par l’irradiation.

Barralis, J., Castex, L. & Maeder, G. 1999. Précontraintes et traitements superficiels. Précontraintes et traitements superficiels, MD1(M1180): M1180.1 (51). Available at: https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/traitements-thermiques-superficiels-et-thermochimiques-42501210/precontraintes-et-traitements-superficiels-m1180/precontraintes-et-traitements-superficiels-m1180niv10003.html

Bhadeshia, H.K.D.H. & Honeycombe, R.W.K. 2006. Steels: microstructure and properties. 3rd ed. Amsterdam ; Boston: Elsevier, Butterworth-Heinemann. Language: English, Available at: https://shop.elsevier.com/books/steels-microstructure-and-properties/bhadeshia/978-0-7506-8084-4. ISBN: 9780080462929

Blanchard, R., Pelissier, J. & Pluchery, M. 1960. Effets de l’hydrogene sur les caracteristiques de rupture par traction d’aciers inoxydables. Journal of Nuclear Materials, 2(3): 216–224. Available at: https://www.sciencedirect.com/science/article/pii/0022311560900568 8 August 2024.

Brass, A.-M., Chêne, J. & Coudreuse, L. 2000. Fragilisation des aciers par l’hydrogène : étude et prévention. Corrosion Vieillissement. Available at: https://www.techniques-ingenieur.fr/doi/10.51257/a/v2/m175 9 July 2024.

Cauwels, M., Claeys, L., Depover, T. & Verbeken, K. 2019. The hydrogen embrittlement sensitivity of duplex stainless steel with different phase fractions evaluated by in-situ mechanical testing. Frattura ed Integrità Strutturale, 14(51): 449–458. Available at: https://www.fracturae.com/index.php/fis/article/view/2666 8 August 2024.

Chêne, J. 2009. L’hydrogène dans les matériaux métalliques en relation avec les interactions plasticité-environnement. In PlastOx 2007 - Mécanismes et Mécanique des Interactions Plasticité - Environnement. PlastOx 2007 - Mécanismes et Mécanique des Interactions Plasticité - Environnement. Argelès-sur-Mer, France: EDP Sciences: 131–145. Available at: http://plastox.edpsciences.org/10.1051/ptox/2009010 9 July 2024.

Colombié, M. 2008. Matériaux métalliques. 2e éd. Paris: Dunod. Available at: https://www.dunod.com/sciences-techniques/materiaux-metalliques-0

Cunat, P.-J. 2000. Aciers inoxydables - Propriétés. Résistance à la corrosion. Étude et propriétés des métaux. Available at: https://www.techniques-ingenieur.fr/doi/10.51257/a/v1/m4541 8 August 2024.

Depover, T., Pérez Escobar, D., Wallaert, E., Zermout, Z. & Verbeken, K. 2014. Effect of hydrogen charging on the mechanical properties of advanced high strength steels. International Journal of Hydrogen Energy, 39(9): 4647–4656. Availableat:https://www.sciencedirect.com/science/article/pii/S0360319913031820 10 July 2024.

DIN TASCHENBUCH 19. 1975. DIN-Taschenbuch 19. Materialprüfnormen für metallische Werkstoffe 1. Available at: https://www.ingenieur-buch.de/din-taschenbuch-19-materialprufnormen-fur-metallische-werkstoffe-1.html 10 July 2024.

El Hilali, F., Habashi, M. & Mohsine, A. 1999. Comportement mécanique de l’acier inoxydable martensitique 17-4 PH en corrosion sous contrainte et à la fragilisation par l’hydrogéne environnemental. Annales de Chimie Science des Matériaux, 24(3): 169–194. Available at: https://www.sciencedirect.com/science/article/pii/S0151910799800440 9 August 2024.

Frappart, S., Oudriss, A., Feaugas, X., Creus, J., Bouhattate, J., Thébault, F., Delattre, L. & Marchebois, H. 2011. Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy. Scripta Materialia, 65(10): 859–862. Available at: https://linkinghub.elsevier.com/retrieve/pii/S1359646211004416 8 August 2024.

Grimault, B., Chauveau, E., Gaillet, L., Drissi-Habti, M., Chaussadent, T. & Mantel, M. 2012. Comportement d’aciers inoxydables à hautes caractéristiques mécaniques vis-à-vis de la corrosion par piqûre et de la fragilisation par hydrogène. Matériaux & Techniques, 100(2): 113–125. Available at: http://www.mattech-journal.org/10.1051/mattech/2012008 9 July 2024.

Hamissi, C., Lakhdari, A., Aboura, A. & Seddak, M. 2016. Hydrogénation des vis en acier 35B2 lors du décapage acide. Revue des matériaux et énergies renouvelables, 1(1): 1–7. Available at: https://www.asjp.cerist.dz/en/article/67672 9 August 2024.

He, J., Han, G., Fukuyama, S. & Yokogawa, K. 1999. Tensile behaviour of duplex stainless steel at low temperatures. Materials Science and Technology, 15(8): 909–920. Available at: https://journals.sagepub.com/doi/full/10.1179/026708399101506715 9 July 2024.

Iacoviello, F. 1995. V - Fragilisation par l’hydrogène de l’acier inoxydable duplex Z2CND2205 chargé en hydrogène à 200°C. Matériaux & Techniques, 83: 48–50. Available at: http://www.mattech-journal.org/10.1051/mattech/199583120048s 9 July 2024.

Jin, T.Y., Liu, Z.Y. & Cheng, Y.F. 2010. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel. International Journal of Hydrogen Energy, 35(15): 8014–8021. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0360319910010591 27 December 2024.

Laureys, A., Claeys, L., De Seranno, T., Depover, T., Van Den Eeckhout, E., Petrov, R. & Verbeken, K. 2018. The role of titanium and vanadium based precipitates on hydrogen induced degradation of ferritic materials. Materials Characterization, 144: 22–34. Available at: https://linkinghub.elsevier.com/retrieve/pii/S1044580318310386 8 August 2024.

Laureys, A., Pinson, M., Claeys, L., Deseranno, T., Depover, T. & Kim, V. 2020. Initiation of hydrogen induced cracks at secondary phase particles. Frattura ed Integrità Strutturale, 14(52): 113–127. Available at: https://www.fracturae.com/index.php/fis/article/view/2710 8 August 2024.

Lee, J.-L. & Lee, J.-Y. 1987. The effect of lattice defects induced by cathodic hydrogen charging on the apparent diffusivity of hydrogen in pure iron. Journal of Materials Science, 22(11): 3939–3948. Available at: http://link.springer.com/10.1007/BF01133343 8 August 2024.

Li, N., Wang, W., Liang, Q. 1999. Effect of hydrogen embritllement and non-metallic inclusions on tensile fracture properties of 55CrSi spring steel, Mater, Res. Express 7 046520. Available at: https://iopscience.iop.org/article/10.1088/2053-1591/ab8b19/pdf

Lo, K.H., Shek, C.H. & Lai, J.K.L. 2009. Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4–6): 39–104. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0927796X09000461 8 August 2024.

Ly, C. 2009. Caractérisation d’aciers à très haute limite d’élasticité vis-à-vis de la fragilisation par l’hydrogène.

Lynch, S. 2012. Hydrogen embrittlement phenomena and mechanisms. Corrosion Reviews, 30(3–4). Available at: https://www.degruyter.com/document/doi/10.1515/corrrev-2012-0502/html 8 August 2024.

Murakami, Y., Kanezaki, T. & Sofronis, P. 2013. Hydrogen embrittlement of high strength steels: Determination of the threshold stress intensity for small cracks nucleating at nonmetallic inclusions. Engineering Fracture Mechanics, 97: 227–243.Available at: https://linkinghub.elsevier.com/retrieve/pii/S0013794412004377 8 August 2024.

Murakami, Y. & Matsunaga, H. 2006. The effect of hydrogen on fatigue properties of steels used for fuel cell system. International Journal of Fatigue, 28(11): 1509–1520. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0142112306001009 8 August 2024.

Prieto, G. & Tuckart, W.R. 2017. Influence of Cryogenic Treatments on the Wear Behavior of AISI 420 Martensitic Stainless Steel. Journal of Materials Engineering and Performance, 26(11): 5262–5271. Available at: http://link.springer.com/10.1007/s11665-017-2986-y 8 August 2024.

Robertson, I.M., Sofronis, P., Nagao, A., Martin, M.L., Wang, S., Gross, D.W. & Nygren, K.E. 2015. Hydrogen Embrittlement Understood. Metallurgical and Materials Transactions A, 46(6): 2323–2341. Available at: https://link.springer.com/10.1007/s11661-015-2836-1 9 July 2024.

Sales, D.G. 2015. Etude des mécanismes d’endommagement d’aciers martensitiques associés au SSC (Sulphide Stress Cracking). Available at:https://theses.hal.science/tel-03091976

Published
2025/12/17
Section
Original Scientific Papers