Energetic additives in explosive charges of rockets used during the war against the FR Yugoslavia in 1999

  • Mirjana N. Anđelković-Lukić Vojnotehnički institut
Keywords: explosive devices, energetic additives, chemical warfare,

Abstract


The use of explosive devices containing energy enhancement additives such as halogen compositions, metals in a form of fine powders and waxes resulted in the formation of toxic gases after their detonation. The released harmful gases together with the products of destruction of bombed targets had the effects of special chemical warfare.

References

Anđelković-Lukić, M. 2006. Ecological aspect of pyralen application. Vojnotehnički glasnik/Military Technical Courier, 54(3), pp.348-353 (in Serbian). Available at: https://doi.org/10.5937/vojtehg0603348A.

Anđelković-Lukić, M. 2009. Synthesis and physicochemical properties of the HNIW (CL-20) explosive. Vojnotehnički glasnik/Military Technical Courier, 57(2), pp.86-93 (in Serbian). Available at: https://doi.org/10.5937/vojtehg0902086A.

Anđelković-Lukić, M. 2000. New high-explosive explosive - polycyclic nitramine hexanitrohexaazaisovurcitan (HNIW, CL-20). Scientific Technical Review, 50(6).

Anđelković-Lukić, M. 2015a. Darovi milosrdnog anđela - Ekološko razmatranje rata NATO protiv SR Jugoslavije, 2. dopunjeno izdanje. Novi Sad: Balkanija (in Serbian).

Anđelković-Lukić, M. 2015b. Chemical, Radiological and Environmental Impacts of NATO’s War of Aggression against Yugoslavia. In: 19th Internacional Scientific Eco-Conference, Novi Sad, Serbia, pp.39-50, 23-25 September.

Brousseau, P., & Anderson C.J. 2002. Nanometric Aluminum in Explosives. Propellants, explosives, pyrotechnics, 27(5), pp.300-306. Available at: https://doi.org/10.1002/1521-4087(200211)27:5<300::AID-PREP300>3.0.CO;2-%23.

Cai, W., Thakre, P., & Yang, W. 2008. A Model of AP/HTPB Composite Propellant Combustion in Rocket-Motor Environments. Combustion Science and Technology. 180(12), pp.2143–2169. Available at: https://doi.org/10.1080/00102200802414915.

Dobratz, B.M. 1981. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants. United States.

Minier, L.M.G., & Behrens, R. 1997. Thermal decomposition mechanisms of bis(2‐fluoro‐2,2‐dinitroethyl) formal (FEFO) and bis(2‐fluoro‐2,2‐dinitroethyl) difluoroformal (DFF) from simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) measurements. Propellants, Explosives, Pyrotechnics, 22(1), pp.23-33. Available at: https://doi.org/10.1002/prep.19970220107.

-Savezno Ministarstvo za razvoj, nauku i životnu sredinu. 2000. Posledice NATO bombardovanja na životnu sredinu SR Jugoslavije - Izveštaj. Belgrade: Savezno Ministarstvo za razvoj, nauku i životnu sredinu (in Serbian).

Sundaram, D.S., Yang, V., & Zarko, V.E. 2015. Combustion of nano aluminum particles (Review). Combustion, Explosion, and Shock Waves, 51(2), pp.173-196. Available at: https://doi.org/10.1134/S0010508215020045.

Weidong, C., Piyush, T., & Vigor, Y. 2008. A model of AP/HTPB composite propellants combustion in rocket-motors environements. Combustion Science and Technology, 180(12), pp.2143–2169. Available at: https://doi.org/10.1080/00102200802414915.

Published
2019/10/05
Section
Original Scientific Papers