Optimization of arsenite adsorption on hydroxy apatite based adsorbent using the adaptive neuro-fuzzy inference system
Abstract
This paper describes an optimization procedure for the adsorption of arsenite ions from wastewater using the Adaptive Neuro-Fuzzy Inference System (ANFIS). The adsorbent is based on hydroxy apatite, a natural material obtained from carp (Cyprinus carpio) scales. The input parameters were the influence of pH, the temperature, the initial concentration and reaction time of arsenite adsorption while the adsorption capacity and the arsenite removal percentage were studied as the output parameters.
References
Abraham, A. 2005. Adaptation of Fuzzy Inference System Using Neural Learning. In: N. Nedjah& L. de Macedo Mourelle Eds., Fuzzy Systems Engineering: Theory and Practice, Studies in Fuzziness and Soft Computing 181. Germany: Springer Verlag, pp.53–83.
Bajić, Z.J., Djokić, V.R., Veličković, Z.S., Vuruna, M.M., Ristić, M.D., Issa, B.N., & Marinković, A.D. 2013. Equilibrium, Kinetic and Thermodynamic Studies on Removal of Cd(II), Pb(II) and As(V) from Wastewater Using Carp (Cyprinus Carpio) Scales. Digest Journal of Nanomaterials and Biostructures, 8(4), pp.1581-1590. Available at: http://www.chalcogen.ro/1581_Bajic.pdf [Accessed: 21 April 2019].
Bajić, Z.J., Veličković, Z.S., Djokić, V.R., Perić-Grujić, A.A., Ovidiu, E., Uskoković, P.S., & Marinković, A.D. 2016. Adsorption study of Arsenic removal by novel hybrid copper impregnated Tufa adsorbents in a batch system. CLEAN Air Water Soil, 44(11), pp.1477-1488. Available at: https://doi.org/10.1002/clen.201500765.
Catros, S., Guillemot, F., Lebraud, E., Chanseau, C., Perez, S., Bareille, R., & Fricain, J.C. 2010. Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature. Irbm, 31(4), pp.226-233. Available at: https://doi.org/10.1016/j.irbm.2010.04.002.
Chakraborty, R., & RoyChowdhury, D. 2013. Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chemical engineering journal, 215-2016, pp.491-499. Available at: https://doi.org/10.1016/j.cej.2012.11.064.
Corami, A., Mignardi, S., & Ferrini, V. 2008. Cadmium removal from single- and multimetal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. J. Colloid Interface Sci, 317(2), pp.402-408. Available at: https://doi.org/10.1016/j.jcis.2007.09.075.
Dimović, S., Smičiklas, I., Plećaš, I., Antonović, D., & Mitrić, M. 2009. Comparative study of differently treated animal bones for Co2+ removal. J. Hazard. Mater, 164(1), pp.279-287. Available at: https://doi.org/10.1016/j.jhazmat.2008.08.013.
Dreiseitl, S., & Ohno-Machado, L. 2002. Logistic regression and artificial neural network classification models: a methodology review. Journal of biomedical informatics, 35(5-6), pp.352-359. Available at: https://doi.org/10.1016/S1532-0464(03)00034-0.
Dziubek, J. 2017. Arsenic removal from industrial wastewater. In: 9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2017, 17. Available at: https://doi.org/10.1051/e3sconf/20171700020.
Ferraz, M.P., Monteiro, F.J., & Manuel, C.M. 2004. Hydroxyapatite nanoparticles: A review of preparation methodologies. Journal of Applied Biomaterials and Biomechanics, . 2(2), pp.74-80. Available at: https://journals.sagepub.com/doi/pdf/10.1177/228080000400200202 [Accessed: 21 April 2019].
Gómez del Rı́o, J.A., Morando, P.J., & Cicerone, D.S. 2004. Natural materials for treatment of industrial effluents: Comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. Part I: Batch experiments. J. Environ. Manage., 71(2), pp.169-177. Available at: https://doi.org/10.1016/j.jenvman.2004.02.004.
Huang, Y.C., Hsiao, P.C., & Chai, H.J. 2011. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37(6), pp.1825-1831. Available at: https://doi.org/10.1016/j.ceramint.2011.01.018.
Islam, M., Mishra, P.C., & Patel, R. 2011. Arsenate removal from aqueous solution by cellulose-carbonated hydroxyapatite nanocomposites. J. Hazard. Mater, 189(3), pp.755-763. Available at: https://doi.org/10.1016/j.jhazmat.2011.03.051.
Iyengar, G.V., & Tandon, L. 1999. Minor and trace elements in human bones and teeth. Vienna: International Atomic Energy Agency. Available at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/029/31029996.pdf?r=1&r=1 [Accessed: 21 April 2019].
Jadalannagari, S., More, S., Kowshik, M., & Ramanan, S.R. 2011. Low temperature synthesis of hydroxyapatite nano-rods by a modified sol–gel technique. Materials Science and Engineering: C, 31(7), pp.1534-1538. Available at: https://doi.org/10.1016/j.msec.2011.07.001.
Jang, J.S.R. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), pp.665-685. Available at: https://doi.org/10.1109/21.256541.
Jang, J.S.R. 1991. Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm. In Proceedings of the 9th National Conference on Artificial Intelligence. Anaheim, CA, USA, pp.762-767. July 14-19.
Jang, J.S.R., Sun, C.T., & Mizutani, E. 1997. Neuro-Fuzzy and Soft Computing. NJ, USA: Prentice Hall.
Järup, L. 2003. Hazards of heavy metal contamination. British Medical Bulletin, 68(1), pp.167-182. Available at: https://doi.org/10.1093/bmb/ldg032.
Jovanović, B., Ljubisavljević, D., & Rajaković. 2011. Uklanjanje arsena iz vode adsorpcijom na nekonvencionalnim materijalima. Vodoprivreda, 43(4-6), pp.127-150, in Serbian. Available at: http://www.vodoprivreda.net/uklanjanje-arsena-iz-vode-adsorpcijom-na-nekonvencionalnim-materijalima [Accessed: 21 April 2019].
Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., & Chanthai, S. 2013. Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chemical engineering journal, 215-216, pp.522-532. Available at: https://doi.org/10.1016/j.cej.2012.11.054.
Luna-Zaragoza, D., Romero-Guzmán, E.T., & Reyes-Gutiérrez, L.R. 2009. Surface and physicochemical characterization of phosphates vivianite, Fe2(PO4)3 and hydroxyapatite, Ca5(PO4)3OH. Journal of Minerals and Materials Characterization and Engineering, 8(8), pp.591-609. Available at: https://doi.org/10.4236/jmmce.2009.88052.
Lü.X.Y., Fan, Y.B., Gu, D., & Cui, W. 2007. Preparation and characterization of natural hydroxyapatite from animal hard tissues. Key Engineering Materials, 342-343, pp.213-216. Available at: https://doi.org/10.4028/www.scientific.net/KEM.342-343.213
Ma, Q.Y., Logan, T.J., Traina, S.J., & Ryan, J.A. 1994a. Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol, 28(7), pp.1219-1228. Available at: https://doi.org/10.1021/es00056a007.
Ma, Q.Y., Logan, T.J., & Traina, S.J. 1994b. Effects of NO3-, CI-, F-, SO42-, and CO32- on Pb2+ immobilization by hydroxyapatite. Environ. Sci. Technol, 28(3), pp.408-418. Available at: https://doi.org/10.1021/es00052a011.
Mehran, K. 2008. Takagi-Sugeno fuzzy modeling for process control. In Industrial Automation, Robotics and Artificial Intelligence (EEE8005). Newcastle University-School of Electrical, Electronic and Computer Engineering.
Nayak, A.K. 2010. Hydroxyapatite synthesis methodologies: An overview. International Journal of ChemTech Research, 2(2), pp.903-907. Available at: http://sphinxsai.com/s_v2_n2/CT_V.2No.2/ChemTech_Vol_2No.2_pdf/CT=24%20(903-907).pdf [Accessed: 21 April 2019].
Pamučar, D., & Ćirović, G. 2018. Vehicle route selection with an adaptive neuro fuzzy inference system in uncertainty conditions. Decision Making: Applications in Management and Engineering, 1(1), pp.13-37. Available at: https://www.dmame.org/index.php/dmame/article/view/1/1 [Accessed: 21 April 2019].
Pamučar, D., Vasin, Lj., & Lukovac, V. 2014. Selection of railway level crossings for investing in security equipment using hybrid DEMATEL-MARICA model. In XVI International Scientific-expert Conference on Railway RAILCON 2014, Niš, Serbia, pp.89-92. October 09-10.
Panda, N.N., Pramanik, K., & Sukla, L.B. 2014. Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. Bioprocess and biosystems engineering, . 37(3), pp.433-440. Available at: https://link.springer.com/article/10.1007/s00449-013-1009-0 [Accessed: 21 April 2019].
Ramli, R.A., Adnan, R., Bakar, M.A., & Masudi, S.A.M. 2011. Synthesis and characterisation of pure nanoporous hydroxyapatite. J. Phys. Sci, 22(1), pp.20-37 Available at: https://pdfs.semanticscholar.org/09bb/06858eb697b1df4a43f62351b67edb5b3246.pdf [Accessed: 21 April 2019].
Scalera, F., Gervaso, F., Sanosh, K.P., Sannino, A., & Licciulli, A. 2013. Influence of the calcination temperature on morphological and mechanical properties of highly porous hydroxyapatite scaffolds. Ceramics International, 39(5), pp.4839-4846. Available at: https://doi.org/10.1016/j.ceramint.2012.11.076.
Sobczak-Kupiec, A., & Wzorek, Z. 2012. The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite. Ceramics International, 38(1), pp.641-647. Available at: https://doi.org/10.1016/j.ceramint.2011.06.065.
Sremac, S., Tanackov, I., Kopić, M., & Radović, D. 2018. ANFIS model for determining the economic order quantity. Decision Making: Applications in Management and Engineering, 1(2), pp.81-92. Available at: https://www.dmame.org/index.php/dmame/article/view/13/15 [Accessed: 21 April 2019].
Stötzel, C., Müller, F.A., Reinert, F., Niederdraenk, F., Barralet, J.E., & Gbureck, U. 2009. Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloid Surf. B: Biointerfaces, 74(1), pp.91-95. Avaiulable at: https://doi.org/10.1016/j.colsurfb.2009.06.031.
Sukaimi, J., Hamzah, S., Ghazali, M., & Sabri, M. 2014. Green Synthesis and Characterization of Hydroxyapatite from Fish Scale Biowaste. Applied Mechanics and Materials, 695, pp.235-238. Available at: https://doi.org/10.4028/www.scientific.net/AMM.695.235.
Tahmasebi, P. 2012. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Computers and Geosciences,42, pp.18-27. Available at: https://doi.org/10.1016/j.cageo.2012.02.004.
Takagi, T., & Sugeno, M. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15 (1), pp.116-132. Available at: https://doi.org/10.1109/TSMC.1985.6313399.
Thomson, B.M., Smith, C.L., Busch, R.D., Siegel, M.D., & Baldwin, C. 2003. Removal of metals and radionuclides using apatite and other natural sorbents. J. Environ. Eng, 129(6), pp.492-499.
Veličković, Z., Ivanković, N., Striković, V., Karkalić, R., Jovanović, D., Bajić, Z., & Bogdanov, J. 2016. Investigation of soil properties influence on the heavy metals sorption by plants and possibilities for prediction of their bioaccumulation by response surface methodology. J. Serb. Chem. Soc, 81(8), pp.1-14. Available at: https://www.shd-pub.org.rs/index.php/JSCS/article/view/1823/310 [Accessed: 21 April 2019].
Xu, Y., Schwartz, F.W., & Traina, S.J. 1994. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ. Sci. Technol, 28, pp.1472-1480. Available at: https://doi.org/10.1021/es00057a015.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).