Feedforward neural network: the Levenberg-Marquardt opitmization and the Optimal Brain Surgeon Pruning
Abstract
This paper presents the training, testing and pruning of a feedforward neural network with one hidden layer that was used for the prediction of the vowel ”a”. The paper also describes Gradient Descent, the Gauss-Newton and the Levenberg-Marquardt optimization techniques. Optimal Brain Surgeon pruning is applied to the trained network. The stopping criterion was an abrupt change of the Normalized Sum Squares Error. The structure of the feedforward neural network (FNN) was 18 inputs (four for glottal and 14 for speech samples), 3 neurons in the hidden layer and one output. The results have shown that, after pruning, the glottal signal has no effect on the model for a female speaker, while it affects the prediction of the speech pronounced by a male speaker. In both cases, the structure of the FNN is reduced to a small number of parameters.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).