Modeling the movement of a missile in the tubular guide of the starting installation

  • Oleksandr M. Shyiko Sumy National Agricultural University
  • Anatoly М. Pavlyuchenko National Agricultural University, Sumy
  • Olexii А. Obukhov Research Center of Rocket Forces and Artillery, Sumy
  • Igor V. Koplyk State University, Sumy
Keywords: missile launcher, movable launcher, elastic model, launching tube, spatial portion of movement, interaction forces, angles of vectors, center of mass velocities, projectile axis angles,

Abstract


The paper presents computational and mathematical model of the spatial motion of a rocket with centering bulges and a pin on the body in a thin-walled tubular guide mounted on two fixed supports and equipped with a screw groove. The models take into account the interaction of the projectile with the inner surface of the guide tube at the locations of the drive pin and the centering bulge. The strength of the normal reaction of the inner surface of the guide is found as a reaction to the elastic deformation of the pipe caused by normal to its inner surface displacements of the centering thickening at the point of contact with the guide. In this case, the tubular guide is considered as an elastic thin-walled shell. To calculate the values of the shell stiffness coefficient along its length, the finite element method implemented in the ANSYS Mechanical software package is used. The translational component of the projectile motion is investigated on the basis of the theorem on the motion of the center of mass. The rotational component is investigated on the basis of the Lagrange equations of the second kind. The generalized parameters of the rotational motion are the yaw Ψ and pitch θ angles, the angle of attack α, the angle of slip β, and the angle of rotation of the projectile around the longitudinal axis φ. The aerodynamic angle of heel γа is found from the transition formulas for the adopted coordinate systems. The yaw velocity angle Ψ, the pitch velocity angle θ, and the aerodynamic roll angle γа as well as the first time derivatives of these angles are converted into the yaw angles ψ and pitch υ of the projectile axis and their derivatives in the starting coordinate system.

Author Biography

Oleksandr M. Shyiko, Sumy National Agricultural University
Candidate of Techn. Scien., the Associate Professor to Department of «Technical Service» of the Sumy National Agricultural University

References

Antunevich, A.L., Il'jov, I.G., Goncharenko, V.P. & Mironov, D.N. 2017. Application of mathematical models for the analysis of complex mechanical system undergoing heterogeneous variable actions. Theoretical and applied mechanics, 32, pp.207-213 (in Russian). (In the original: Антуневич, А.Л., Ильёв, И.Г., Гончаренко, В.П., Миронов Д.Н. 2017. Применение математической модели для анализа сложной механической системы, подверженной неоднородным переменным воздействиям. Теоретическая и прикладная механика, 32, стр.207-213). Available at: http://rep.bntu.by/handle/data/28261 [Accessed: 30 July 2019].

Bogomolov, A.I. 2003. Osnovanija ustrojstva i raschet reaktivnyh system. Penza: Penza Artillery Engineering Institute (in Russian). (In the original: Богомолов, А.И. 2003. Основания устройства и расчет реактивных систем. Пенза: Пензенский артиллерийский инженерный институт).

Dziopa, Z., Buda, P., Nyckowski, M., & Pawlikowski, R. 2015. Dynamics of an unguided missiles launcher. Journal of theoretical and applied mechanics, 53(1), pp.69-80. Available at: https://doi.org/10.15632/jtam-pl.53.1.69.

Dziopa, Z., Krzysztofik, I., & Кoruba, Z. 2010. An analysis of the dynamics of a launcher-missile system on a moveable base. Bulletin of the Polish Academy of Sciences. Technical Sciences, 58(4), pp.645-650. Available at: https://doi.org/10.2478/v10175-010-0068-5.

Raducanu, D., Nedelcu, I., Safta, D., Somoiag, P., & Moldoveanu, C. 2009. Particularity Concerning Evaluation of Unguided Rocket Trajectories Deviation under the Disturbance Factors Action. In: Proceedings of the World Congress on Engineering 2009, London, Vol II WCE, pp.1458-1462, July 1–3. Available at: http://www.iaeng.org/publication/WCE2009/WCE2009_pp1458-1462.pdf [Accessed: 30 July 2019].

Shyiko, O.M. 2014. Simulation of joint movement of a missile and a mobile launcher. Armament systems and military equipment, 2(38), pp.44-60. (in Ukrainian). (In the original: Шийко О.М. 2014. Моделювання сумісного руху реактивного снаряда та мобільної пускової установки РСЗВ. Системи озброєння і військова техніка, 38(2), стр.44-60).

Somoiag, P., Moraru, F., Safta, D., & Moldoveanu, C. 2007. A Mathematical Model for the Motion of a Rocket-Launching Device System on a Heavy Vehicle. WSEAS Transactions on Applied and Theoretical Mechanics, 2(4), pp.95-101. Available at: https://www.researchgate.net/publication/261708644 [Accessed: 30 July 2019].

Svetlickij, V.A. 1986. Dinamika starta letatelnyh apparatov. Moscow: Nauka. Gl. red. fiz.-mat. lit. (in Russian). (In the original: Светлицкий, В.А. 1986. Динамика старта летательных аппаратов. Москва: Наука. Гл. ред. физ.-мат.лит.).

Published
2019/10/05
Section
Original Scientific Papers