Presentation of the results for deuterium retention and thermal release in a new type of low activation ferritic-martensitic steel EUROFER
Abstract
This work presents the results of the investigation into deuterium retention and thermal release in low activation ferritic-martensitic steel EUROFER and its main components, Fe and Cr, using ion implantation, nuclear reaction depth profiling and the thermal desorption spectrometry technique. The samples were exposed to deuterium ECR plasma of 6.5×1024 Dm-2 fluence. Our NRA results show that, at 300 K, most of deuterium is trapped in the near-surface region. A part of the implanted deuterium diffuses into the bulk and is trapped by defects beyond the implantation range. The results of the TDS measurement of the Cr sample confirm the formation of an ordered Cr-hydride phase.
References
Alimov, V.Kh., Mayer, M., Roth, 2005, Differential cross-section of the D(3He,p)4He nuclear reaction and depth profiling of deuterium up to large depths, Nucl. Instr. Meth. B, 234, pp.169-175.
Baluc, N., Gelles, D.S., Jitsukawa, S., Kimura, A., Klueh, R.L., Odette, G.R., van der Schaaf, B., Yu, J., 2007, Status of reduced activation ferritic/martensitic steel development, J. Nucl. Mater., 367-370, pp.33-41.
Baranowski, B., Bojarski, K., 1972, Hydride formation at high hydrogen pressure, Rocz. Chem., 46, pp.525-527.
Baranowski, B., 1978, Hydrogen in Metals II, pp.157-200. Ed. By G. Alefeld and J. Völkl, Springer, Heidelberg, Germany.
Bohdansky, J., Wilson, Esteban, G.A., Perujo, A., Douglas, K., Sedano, L.A., 2000, Tritium diffusive transport parameters and trapping effects in the reduced activating martensitic steel OPTIFER-IVb, J. Nucl. Mater. 281, pp.34-41.
Esteban, G.A., Peña, A., Urra, I.,Legarda F., Riccardi, B., J., 2007, Hydrogen transport and trapping in EUROFER'97, J. Nucl. Mater. 367-370, pp.473-477.
Forcey, K.S., Iordanova, I., Ross, D.K., 1990, Investigation of structure dependence of diffusivity, solubility and permeability of hydrogen in hot rolled low carbon steels, Mater. Sci. Technol. 6, pp.357-363.
Fukai, Y., & Mizutani, M. 2002. Hydrogen Absorbing Materials. Phase Diagram and Superabundant Vacancy Formation in Cr-H Alloys. Mater. Trans., 43(5), pp.1079-1084. 43(5): 1079-1084. doi:10.2320/matertrans.43.1079.
Gasparoto, M., Andreani, R., Boccaccini, L.V., Cardella, A., Federici, G., Giancarli, L., Le Marois, G., Maisonnier, D., Malang, S., Moeslang, A., Poiterin, Y., van der Schaaf, B., 2003, Survey of in-vessel candidate materials for fusion power plants – the European materials R&D programme, Fusion Eng. Des. 66-68, pp.129-137.
Horton, L.L., Bentley, J., Jesser, W.A., 1981, J. Nucl. Mater. 104, pp.1343-1347.
Kohyama, A.,Hishinuma, A., Gelles, D.S., Klueh, R.L., Dietz, W., Ehrlich, K., 1996, The depth distribution of displacement damage in α-iron under "triple beam" ion irradiation, J. Nucl. Mater. 233-237, pp.138-147.
Kohyama, A.,Hishinuma, A., Gelles, D.S., Klueh, R.L., Dietz, W., Ehrlich, K., 1996, Low-activation ferritic and martensitic steels for fusion application, J. Nucl. Mater. 233-237, pp.138-147.
Langley, R.A., 1984, Hydrogen trapping, diffusion and recombination in austenitic stainless steels, J. Nucl. Mat. 128-129, pp.622-628.
Levchuk, D., Koch, F., Maier, H., Bolt, H., 2004, Deuterium permeation through Eurofer and α-alumina coated Eurofer, J. Nucl. Mater. 328, pp.103-106.
Lindau, R., Möslang, A., Rieth, M., Klimiankou, M., Materna-Morris, E., Alamo, A., 2005, Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Eng. Des. 75-79 pp.989-996.
Manhard, A., Schwarz-Selinger, T., Jacob, W., 2011, Quantification of the deuterium ion fluxes from a plasma source, Plasma Sources Sci. Technol. 20, pp.015-010.
Pressouyre, G.M. 1979. A classification of hydrogen traps in steel. Metallurgical Transactions A, 10(10), pp.1571-1573. 10(10): 1571-1573. doi:10.1007/BF02812023.
Redhead, P. A., 1962, Thermal desorption of gases, Vacuum 12, pp.203-211.
Schmid, K., Von Toussaint, U., 2012, Statistically sound evaluation of trace element depth profiles by ion beam analysis, Nucl. Instrum. Meth. B 281, pp.64-71.
Seeger, A., 1976, On the location of positive muons and solute hydrogen atoms in alpha iron, Phys. Lett. A 58, pp.137-138.
Snavely, C.A., 1947, Theory for the mechanism of chromium plating; A theory for the physical characteristics of chromium plate, Trans. Electrochem. Soc. 92, pp.537-577.
Spitsyn, A.V., Golubeva, A.V., Bobyr, N.P., Khripunov, B.I., Cherkez, D.I., Petrov, V.B., 2014, Retention of deuterium in damaged low-activation steel RUSFER(EK-181) after gas and plasma exposure, J. Nucl. Mat. 455, pp.561-567.
Tavassoli, A.-A.F., Alamo, A., Bedel, L., Forest, L., Gentzbittel, J.-M., Rensman J.-W., 2004, Materials design data for reduced activation martensitic steel type EUROFER, J. Nucl. Mat. 329-333, pp.257-262.
Van der Schaaf, B., Tavassoli, F., Fazio, C., Rigal, E., Diegele, E., Lindau, R., LeMarois, G., 2003, The development of EUROFER reduced activation steel, Fusion Eng. Des. 69, pp.197-203.
Wedig, F., Jung, P., 1997, Effects of irradiation and implementation on permeation and diffusion of hydrogen isotopes in iron and martensitic stainless steel, J. Nucl. Mat. 245, pp.138-146.
Wilson, K.L., Baskes, M.I., 1978, Deuterium trapping in irradiated 316 stainless steel, J. Nucl. Mat. 76-77, pp.291-297.
Wilson, K.L., 1981, Hydrogen recycling properties of stainless steels, J. Nucl. Mater. 103, pp.453-463.
Yao, Z., Liu, C., Jung, P., 2005, Diffusion and permeation of deuterium in EUROFER97: Effect of Irradiation and of implanted helium, Fusion Sci. Technol. 48, pp.1285-1291.
Ziegler, J.F., 2004, 2004, SRIM 2003, Nucl. Instr. Meth. B 219-220, pp.1027-1036.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).