Primena konačnih tačaka uzorkovanja u višekriterijumskoj optimizaciji zasnovanoj na verovatnoći pomoću uniformnog eksperimentalnog dizajna

Ključne reči: poželjna verovatnoća, višekriterijumska optimizacija, konačne tačke uzorkovanja, pojednostavljivanje evaluacije, metod uniformnog dizajna

Sažetak


Uvod/cilj: Aproksimacija procene konačnog integrala ne prestaje da bude privlačna tema zahvaljujući svojoj praktičnoj primeni u naučnim i inženjerskim oblastima. Nedovno je razvijen efikasan pristup izračunavanju određenog integrala s malim brojem tačaka uzorkovanja kako bi se dobila približna vrednost za numerički integral sa komplikovanim integrandom. U ovom radu efikasan pristup s malim brojem tačaka uzorkovanja kombinovan je sa novom višekriterijumskom optimizacijom zasnovanom na verovatnoći (PMOO) pomoću uniformnog eksperimentalnog dizajna s ciljem da se pojednostavi komplikovani određeni integral u PMOO.

Metode: Distribucija tačaka uzorkovanja unutar područja izdvojenog vrha deterministička je i uniformna, što sledi iz pravila metoda uniformnog dizajna i tačaka dobre rešetke. Ukupna poželjna verovatnoća je jedinstveni i deterministički indeks u PMOO.

Rezultati: Primene efikasnog pristupa s konačnim tačkama uzorkovanja za rešavanje tipičnih problema u PMOO ukazuju na njegovu racionalnost i pogodnost pri operacijama.

Zaključak: Efikasan pristup s konačnim tačkama uzorkovanja za ocenu određenog integrala uspešno se kombinuje sa PMOO pomoću metoda uniformnog dizajna i tačaka dobre rešetke.

Reference

Fang, K. 1980. Uniform design — Application of Number Theory Method in Experimental Design. Acta Mathematicae Applicatea Sinica, 3(4), pp.363-272..

Fang, K-T., Liu, M-Q., Qin, H. & Zhou, Y-D. 2018. Theory and Application of Uniform Experimental Designs. Beijing: Science Press & Singapore: Springer Nature. Available at: https://doi.org/10.1007/978-981-13-2041-5

Fang, K-T. & Wang, Y. 1994. Number-theoretic Methods in Statistics. London, UK: Chapman & Hall. ISBN: 0-412-46520-5.

Hua, L-K. & Wang, Y. 1981. Applications of Number Theory to Numerical Analysis. Berlin & New York: Springer-Verlag & Beijing: Science Press. ISBN: 9783540103820.

Huang, B. & Chen, D. 2009. Effective Pareto Optimal Set of Multi-objective Optimization Problems. Computer & Digital Engineering, 37(2), pp.28-34 [online]. Available at: https://caod.oriprobe.com/articles/17362139/Effective_Pareto_Optimal_Set_of_Multi_Objective_Op.htm [Accessed: 20 March 2022].

Paskov, S.H. 1996. New methodologies for valuing derivatives. In: Pliska, S. & Dempster, M. & (Eds.) Mathematics of Derivative Securities, pp.545-582. Cambridge: Isaac Newton Institute & Cambridge University Press. Available at: https://doi.org/10.7916/D8TB1FRJ

Paskov, S.H. & Traub, J.F. 1995. Faster valuation of financial derivatives. Journal of Portfolio Management 22(1), pp.113-120. Available at: https://doi.org/10.3905/jpm.1995.409541

Qu, X., Lu, N., & Meng, X. 2004. Multi-objective Fuzzy Optimization of Tower Crane Boom Tie Rods. Journal of Mechanical Transmission, 28(3), pp.38-40 [online]. Available at: https://caod.oriprobe.com/articles/7413876/Fuzzy_Optimization_of_Arm_Link_Rod_in_Tower_Crane.htm [Accessed: 20 March 2022].

Ripley, B.D. 1981. Spatial Statistics. Hoboken, NJ: John Wiley & Sons. ISBN: 0-47169116-X.

Sloan, I.H. & Wozniakowski, H. 1998. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals?. Journal of Complexity, 14(1), pp.1-33. Available at: https://doi.org/10.1006/jcom.1997.0463

Tezuka, S. 1998. Financial applications of Monte Carlo and Quasi-Monte Carlo methods. In: Hellekalek, P. & Larcher, G. (Eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, 138, pp.303-332. New York: Springer. Available at: https://doi.org/10.1007/978-1-4612-1702-2_7

Tezuka, S. 2002. Quasi-Monte Carlo - Discrepancy between theory and practice. In: Fang, K.T., Niederreiter, H. & Hickernell, F.J. (Eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp.124-140. Heidelberg: Springer-Verlag. Available at: https://doi.org/10.1007/978-3-642-56046-0_8

Wang, Y. & Fang, K. 2010. On number-theoretic method in statistics simulation. Science in China Series A: Mathematics, 53, pp.179-186. Available at: https://doi.org/10.1007/s11425-009-0126-3

Yu, J., Zheng, M., Wang, Y. & Teng, H. 2022. An efficient approach for calculating a definite integral with about a dozen of sampling points. Vojnotehnički glasnik/Military Technical Courier, 70(2), pp. 340-356. Available at: https://doi.org/10.5937/vojtehg70-36029

Zheng, M. 2022. Application of probability-based multi–objective optimization in material engineering. Vojnotehnički glasnik/Military Technical Courier, 70(1), pp.1-12. Available at: https://doi.org/10.5937/vojtehg70-35366

Zheng, M., Teng, H., Yu, J., Cui, Y. & Wang, Y. 2022. Probability-Based Multi-objective Optimization for Material Selection. Singapore: Springer. ISBN: 978-981-19-3350-9.

Zheng, M., Wang, Y. & Teng, H. 2021. A New "Intersection" Method for Multi-objective Optimization in Material Selection. Tehnički glasnik, 15(4), pp.562-568. Available at: https://doi.org/10.31803/tg-20210901142449

Objavljeno
2022/06/24
Rubrika
Originalni naučni radovi