Ispitivanje vršeno savijanjem napredne generacije kompozitnih struktura sa specifičnim svojstvima izloženih različitim opterećenjima

  • Ahmed Zitouni Univerzitet u Tisemsiltu, Odsek za nauku i tehnologiju, Laboratorija za mašinske materijale i konstrukcije, Tisemsilt, Narodna Demokratska Republika Alžir https://orcid.org/0000-0003-1627-6020
  • Bachir Bouderba Univerzitet u Tisemsiltu, Odsek za nauku i tehnologiju, Laboratorija za mašinske materijale i konstrukcije, Tisemsilt, Narodna Demokratska Republika Alžir https://orcid.org/0000-0003-4668-122X
  • Abdelkader Dellal Univerzitet u Tisemsiltu, Odsek za nauku i tehnologiju, Tisemsilt, Narodna Demokratska Republika Alžir https://orcid.org/0009-0003-2305-4845
  • Hamza Madjid Berrabah Univerzitet u Relizanu, Odsek za građevinarstvo, Laboratorija za mašinske materijale i konstrukcije, Relizane, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-7871-4017
Ključne reči: funkcionalno gradirani materijali, savijanje, teorije smicanja višeg reda, termomehanički

Sažetak


Uvod/cilj: U radu je predstavljeno ispitivanje savijanjem napredne generacije kompozitnih struktura sa specifičnim svojstvima izloženih različitim opterećenjima.

Metode: Predlaže se i uvodi nova generalizovana teorija smicanja sa pet varijabli radi izračunavanja statičkog odgovora četvrtastih funkcionalno gradiranih keramičko-metalnih ploča. Teorija eliminiše potrebu za korišćenjem korektivnog faktora smicanja i obezbeđuje odsustvo uslova za deformaciju smicanjem i na gornjoj i na donjoj površini ploče. Uvodi se numeričko ispitivanje za tumačenje uticaja uslova opterećenja i varijacija snage funkcionalno gradiranog materijala, kao i koeficijenata modula, aspekta i debljine na ponašanje funkcionalno gradiranih ploča pri savijanju. Rezultati ovih analiza upoređeni su sa rezultatima dostupnim u literaturi. 

Rezultati: Preliminarni rezultati obuhvataju komparativnu analizu sa standardnim teorijama smicanja višeg reda (PSDPT, ESDPT, SSDPT), kao i sa teorijama Mindlina ( FSDPT) i Kirhofa (CPT).

Zaključak: Zajedno sa već potvrđenim teorijama u ovoj oblasti, predstavljena teorija pruža doprinos uvidom u statički termomehanički odgovor funkcionalno gradiranih ploča. On obuhvata uticaj vrednosti eksponenta zapreminskog udela na nedimenzionalna pomeranja i napone, uticaj koeficijenata aspekta na defleksiju, kao i efekte termalnog polja na defleksiju i napone. Numerički primeri ispitivanja vršenog savijanjem napredne generacije kompozitnih struktura sa specifičnim svojstvima izloženih različitim opterećenjima potvrđuju tačnost predstavljene teorije. 

Reference

Bao, G. & Wang, L. 1995. Multiple cracking in functionally graded ceramic/metal coatings. International Journal of Solids and Structures, 32(19), pp.2853-2871. Available at: https://doi.org/10.1016/0020-7683(94)00267-Z.

Benyamina, A.B., Bouderba, B. & Saoula, A. 2018. Bending response of composite material plates with specific properties, case of a typical FGM “Ceramic/Metal” in thermal environments. Periodica Polytechnica Civil Engineering, 62(4), pp.930-938. Available at: https://doi.org/10.3311/PPci.11891.

Berrabah, H.M. & Bouderba, B. 2023. Mechanical buckling analysis of functionally graded plates using an accurate shear deformation theory. Mechanics of Advanced Materials and Structures, 30(22), pp.4652-4662. Available at: https://doi.org/10.1080/15376494.2022.2102701.

Boggarapu, V., Gujjala, R., Ojha, S., Acharya, S., Venkateswara babu, P., Chowdary, S. & Gara, D.k. 2021. State of the art in functionally graded materials. Composite Structures, 262, pp.113596. Available at: https://doi.org/10.1016/j.compstruct.2021.113596.

Bouazza, M., Tounsi, A., Adda-Bedia, E.A. & Megueni, A. 2011. Thermal buckling of simply supported FGM square plates. Applied Mechanics and Materials, 61, pp.25-32. Available at: https://doi.org/10.4028/www.scientific.net/AMM.61.25.

Bouderba, B. & Benyamina, A. B. 2018. Static analysis of composite material plates "Case of a typical ceramic/metal FGM" in thermal environments. Journal of Materials and Engineering Structures, 5(1), pp.33-45 [online]. Available at: https://revue.ummto.dz/index.php/JMES/article/view/1606 [Accessed: 01. January 2024].

Bouderba, B. & Berrabah, H.M. 2022. Bending response of porous advanced composite plates under thermomechanical loads. Mechanics Based Design of Structures and Machines, 50(9), pp.3262-3282. Available at: https://doi.org/10.1080/15397734.2020.1801464.

Bouderba, B., Houari, M.S.A. & Tounsi, A. 2013. Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations. Steel and Composite Structures, 14(1), pp.85-104. Available at: https://doi.org/10.12989/scs.2013.14.1.085.

Bouderba, B., Houari, M.S.A., Tounsi, A. & Mahmoud, S.R. 2016. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory. Structural Engineering and Mechanics, 58(3), pp.397-422. Available at: https://doi.org/10.12989/sem.2016.58.3.397.

Brischetto, S. & Carrera, E. 2010. Advanced mixed theories for bending analysis of functionally graded plates. Computers & Structures, 88(23-24), pp.1474-1483. Available at: https://doi.org/10.1016/j.compstruc.2008.04.004.

Brischetto, S., Leetsch, R., Carrera, E., Wallmersperger, T. & Kröplin, B. 2008. Thermo-mechanical bending of functionally graded plates. Journal of Thermal Stresses, 31(3), pp.286-308. Available at: https://doi.org/10.1080/01495730701876775.

Daikh, A.A., Bensaid, I. & Zenkour, A.M. 2020. Temperature dependent thermomechanical bending response of functionally graded sandwich plates. Engineering Research Express, 2(1), art.number:015006. Available at: https://doi.org/10.1088/2631-8695/ab638c.

Farrokh, M., Afzali, M. & Carrera, E. 2021. Mechanical and thermal buckling loads of rectangular FG plates by using higher-order unified formulation. Mechanics of Advanced Materials and Structures, 28(6), pp.608-617. Available at: https://doi.org/10.1080/15376494.2019.1578014.

Farrokh, M., Taheripur, M. & Carrera, E. 2022. Optimum distribution of materials for functionally graded rectangular plates considering thermal buckling. Composite Structures, 289, art.number:115401. Available at: https://doi.org/10.1016/j.compstruct.2022.115401.

Karama, M., Afaq, K. & Mistou, S. 2003. Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of solids and structures, 40(6), pp.1525-1546. Available at: https://doi.org/10.1016/S0020-7683(02)00647-9.

Kieback, B., Neubrand, A. & Riedel, H. 2003. Processing techniques for functionally graded materials. Materials Science and Engineering: A, 362(1-2), pp.81-106. Available at: https://doi.org/10.1016/S0921-5093(03)00578-1.

Koizumi, M. 1993. The concept of FGM, functionally graded materials. In: Ceramic transactions, 34, pp.3-10. Westerville: American Ceramic Society.

Koizumi, M. 1997. FGM activities in Japan. Composites part B: Engineering, 28(1-2), pp.1-4. Available at: https://doi.org/10.1016/S1359-8368(96)00016-9.

Koizumi, M. & Niino M. 1995. Overview of FGM research in Japan. MRS Bulletin, 20(1), pp.19-21. Available at: https://doi.org/10.1557/S0883769400048867.

Li, M., Guedes Soares, C. & Yan, R. 2020. A novel shear deformation theory for static analysis of functionally graded plates. Composite Structures, 250, art.number:112559. Available at: https://doi.org/10.1016/j.compstruct.2020.112559.

Mindlin, R.D. 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, 18(1), pp.31-38. Available at: https://doi.org/10.1115/1.4010217.

Pindera, M.-J., Aboudi, J. & Arnold, S.M. 1998. Thermomechanical analysis of functionally graded thermal barrier coatings with different microstructural scales. Journal of the American Ceramic Society, 81(6), pp.1525-1536. Available at: https://doi.org/10.1111/j.1151-2916.1998.tb02512.x.

Reddy, J.N. 1984. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, 51(4), pp.745-752. Available at: https://doi.org/10.1115/1.3167719.

Reddy, J.N. 2000. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 47(1-3), pp.663-684. Available at: https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.

Reissner, E. 1945. The effect of transverse shear deformation on the bending of elastic plates. ASME Journal of Applied Mechanics, 12(2), pp.A69-A77. Available at: https://doi.org/10.1115/1.4009435.

Shinde, B.M., Sayyad, A.S. & Ghumare, S.M. 2015. A refined shear deformation theory for bending analysis of isotropic and orthotropic plates under various loading conditions. Journal of Materials and Engineering Structures «JMES», 2(1), pp.3-15 [online]. Available at: https://revue.ummto.dz/index.php/JMES/article/view/336 [Accessed: 01 January 2024],

Soldatos, K.P. 1992. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica, 94(3-4), pp.195-220. Available at: https://doi.org/10.1007/BF01176650.

Timoshenko, S. & Woinowsky-Krieger, S. 1959. Theory of plates and shells, Second Edition. New York: McGraw-Hill. ISBN: 0-07-064779-8.

Touratier, M. 1991. An efficient standard plate theory. International journal of engineering science, 29(8), pp.901-916. Available at: https://doi.org/10.1016/0020-7225(91)90165-Y.

Zenkour, A. & Alghamdi, N.A. 2010. Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads. Mechanics of Advanced Materials and Structures, 17(6), pp.419-432. Available at: https://doi.org/10.1080/15376494.2010.483323.

Zenkour, A.M. & Hafed, Z.S. 2020. Bending analysis of functionally graded piezoelectric plates via quasi-3D trigonometric theory. Mechanics of Advanced Materials and Structures, 27(18), pp.1551-1562. Available at: https://doi.org/10.1080/15376494.2018.1516325.

Objavljeno
2024/03/05
Rubrika
Originalni naučni radovi