Numeričko ispitivanje nadzvučnog strujanja oko potkalibarnog projektila sa odvojivim nosačem (sabotom)

Ključne reči: protivoklopni metak, pištolj, aerodinamičke karakteristike, Ansys Fluent, CFD, numerička simulacija

Sažetak


Uvod/cilj: U ovom radu proučavaju se aerodinamičke karakteristike specijalnog metka pri nadzvučnoj brzini. Model odabran za studiju bio je pištoljski metak sa odvojivim nosačem (sabotom).

Metode: Korišćen je metod kompjuterski simulirane dinamike fluida (CFD), a za numeričku simulaciju k-ε model turbulencije. Za viskoznost vazduha, kao modela idealnog gasa, primenjena je Saterlandova formula.

Rezultati: Rezultati numeričke simulacije pokazuju ponašanje nadzvučnog strujanja oko metka sa odvojivim sabotom. Variranjem uglova otvaranja segmenata nosača, kao i brzine projektila, uticalo je na njihov aerodinamički otpor koji deluje na nosač  kao i na penetrator za korišćenje u kasnijim proračunima procesa odvajanja jezgra/penetratora od nosača.

Zaključak: Studija pokazuje da se kompjuterska aerodinamika može koristiti za dobijanje aerodinamičkog otpora na nosaču i jezgru nakon što metak napusti cev pištolja. Rezultati simulacije važni su za projektovanje protivoklopnih metaka sa odvojivim nosačem.

Reference

Abdelsalam, O.R. & Fayed, A. 2022. Tungsten carbide core 12.7x99mm AP projectiles ballistic behavior against high hardness steel armor. Journal of Physics: Conference Series, 2299, art.number:012017. Available at: https://doi.org/10.1088/1742-6596/2299/1/012017.

-CBJ Tech. 2024. 6.5x25 CBJ APDS Tungsten core inside a discarding sabot. Cbjtech.com [online]. Available at: https://www.cbjtech.com/ammunition/6-5x25-cbj/6-5x25-cbj-apds/ [Accessed: 21 December 2023].

Do, V.M., Tran, T.H., Bui, X.S. & Le, D.A. 2022. Influence of spike-nosed length on aerodynamic drag of a wing-projectile model. Advances in Military Technology, 17(1), pp.33-45. Available at: https://doi.org/10.3849/aimt.01542.

Dolzhikov, V.I. & Nikolaev, A.V. 2015. Determination of aerodynamic characteristics of rotating aircraft in the uncontrolled flight by means of engineering analysis systems. Aerospace MAI Journal, 22(3), pp.47-53 [online]. Available at: https://vestnikmai.ru/eng/publications.php?ID=58907&eng=Y (in Russian) [Accessed: 20 January 2024].

Huang, Z.-g., Wessam, M.E. & Chen, Z.-h. 2014. Numerical investigation of the three-dimensional dynamic process of sabot discard. Journal of Mechanical Science and Technology, 28, pp.2637-2649. Available at: https://doi.org/10.1007/s12206-014-0620-6.

Ko, A., Chang, K., Sheen, D.-J., Lee, C.-H., Park, Y. & Park, S.W. 2020. Prediction and Analysis of the Aerodynamic Characteristics of a Spinning Projectile Based on Computational Fluid Dynamics. International Journal of Aerospace Engineering, 2020, art.ID:6043721. Available at: https://doi.org/10.1155/2020/6043721.

Launder, B.E. & Spalding, D.B. 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), pp.269-289. Available at: https://doi.org/10.1016/0045-7825(74)90029-2.

Lesage, F. & Girard, B. 1996. Wind tunnel and CFD investigation of aerodynamic interactions during sabot separation. In: 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 15-18. Available at: https://doi.org/10.2514/6.1996-193.

Lin, H. & Lai, C.-L. 1997. Systematic study and numerical simulation of sabot projectile aerodynamics. Journal of the Chinese Institute of Engineers, 20(3), pp.275-284. Available at: https://doi.org/10.1080/02533839.1997.9741831.

Matsson, J.E. 2023. An Introduction to Ansys Fluent 2023. Mission, KS, USA: SDC Publications. ISBN: 978-1-63057-648-6.

-Ministry of Defence, Singapore. 2016. Engineering land systems. Singapore: Ministry of Defence [online]. Available at: https://www.mindef.gov.sg/oms/dam/publications/eBooks/DTC50/Engineering-Land-Systems.pdf [Accessed: 20 January 2024]. ISBN: 978-981-11-1490-8.

Odanović, Z. & Bobić, B. 2003. Ballistic protection efficiency of composite ceramics/metal armours. Scientific Technical Review, 53(3), pp.30-38 [online]. Available at: http://www.vti.mod.gov.rs/ntp/rad2003/3-03/odan/odan.pdf [Accessed: 20 January 2024].

Patanwala, H., Suresh, C. & Pawar, V. 2023. Computational Study of Safe Separation of Sabot from Penetrator in APFSDS. In: Edwin Geo, V. & Aloui, F. (Eds.) Energy and Exergy for Sustainable and Clean Environment, Volume 2, Green Energy and Technology, pp.279-294. Singapore: Springer. Available at: https://doi.org/10.1007/978-981-16-8274-2_19.

Starek, W. & Stepniak, W. 2021. Analysis and evaluation of small arms and ammunition with the reference to known foreign developments. Problemy Techniki Uzbrojenia/Issues of Armament Technology, R.35, z.99 pp.65-89. Available at: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-PWAA-0025-0007 (in Polish) [Accessed: 20 January 2024].

Stopforth, R. & Adali, S. 2019. Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projectiles. Defence Technology, 15(2), pp.186-192. Available at: https://doi.org/10.1016/j.dt.2018.08.006.

Trakic, A. 2020. Axial force coefficient of APFSDS projectile. Defense and Security Studies, 1(1), pp.1-15. Available at: https://doi.org/10.37868/dss.v1.id63.

Yaneva, S. 2020. Ballistic resistance of bulletproof vests level IIIA. Development of testing methodology. MATEC Web of Conferences, 317, art.number:06003. Available at: https://doi.org/10.1051/matecconf/202031706003.

Zochowski, P., Bajkowski, M., Grygoruk, R., Magier, M., Burian, W., Pyka, D., Bocian, M. & Jamroziak, K. 2021. Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures. Metals,11(2), art.number:225. Available at: https://doi.org/10.3390/met11020225.

Objavljeno
2024/06/10
Rubrika
Originalni naučni radovi