Uticaj vertikalnog seizmičkog kretanja u blizini raseda na odgovor grednih kontinualnih mostova rešetkaste konstrukcije i većeg raspona

  • Khaled Benmahdi Univerzitet u Batni 2, Departman za građevinarstvo, Laboratorija za proučavanje konstrukcija i mehanike materijala, Batna, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-8244-5817
  • Noureddine Lahbari Univerzitet u Batni 2, Departman za građevinarstvo, Laboratorija za istraživanje primenjene hidraulike, Batna, Narodna Demokratska Republika Alžir https://orcid.org/0000-0001-9468-0673
  • Nacer Rahal Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir; Laboratorija za mašinske konstrukcije i stabilnost, Oran, Narodna Demokratska Republika Alžir https://orcid.org/0009-0002-0400-8360
  • Abdellah Demdoum Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0000-0001-5214-8160
  • Mohamed Sadoun Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Laboratorija za proučavanje konstrukcija i mehanike materijala, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0008-2314-9402
  • Houda Beghdad Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0001-3548-5138
Ključne reči: gredni most rešetkaste konstrukcije, vertikalno pomeranje, seizmičke performanse, aksijalna sila, odnos vertikalnog i horizontalnog ubrzanja, odnos zahteva i kapaciteta

Sažetak


Uvod/cilj: U ovoj studiji ispituje se seizmički odgovor grednih kontinualnih mostova rešetkaste konstrukcije i većeg raspona na vertikalna pomeranja tla u blizini raseda. Osnovni cilj jeste da se proceni kako vertikalno pomeranje tla usled zemljotresa u blizini raseda utiče na sigurnost konstrukcije i performanse ovih mostova.

Istraživanje tanane dinamike prouzrokovane vertikalnim pomeranjem tla u blizini raseda ima za cilj da proširi saznanja o slabostima grednih kontinualnih mostova rešetkaste konstrukcije i velikog raspona i ukazuje na izazove kojima su izloženi tokom seizmičkih događaja.

Metode: U tu svrhu, rešetkasti most podvrgnut je seriji pomeranja tla, što je predstavljalo prirodne seizmičke događaje. Seizmički odgovor mosta ispitivan je primenom metode linearnog protoka vremena na trodimenzionalni model konačnih elemenata. Ova analiza se fokusira naročito na smicanje i pomeranje baze, ali je i proširena kako bi uključila seizmičke performanse rešetkastih konstrukcija mostova. Odgovor mosta sa uzimanjem u obzir vertikalne komponente pomeranja tla upoređen je sa odgovorom bez uzimanja u obzir date komponente kako bi se razjasnio uticaj vertikalne eksitacije.

Rezultati: Rezultati pokazuju da postoji značajan doprinos vertikalne eksitacije, naročito kada je reč o unutrašnjoj sili u rešetkastim elementima, gde ona prelazi 60% tokom jakih zemljotresa i ima za posledicu povećanje odnosa zahteva i kapaciteta u većini elemenata rešetkaste konstrukcije mosta. 

Zaključak: Rezultati ovog istraživanja pokazuju da zanemarivanje uključivanja komponente vertikalnog pomeranja tla u analitičke procene ove vrste mosta može da dovede do većeg stepena neizvesnosti i rizika, naročito u područjima sa rasedima.

Biografije autora

Noureddine Lahbari, Univerzitet u Batni 2, Departman za građevinarstvo, Laboratorija za istraživanje primenjene hidraulike, Batna, Narodna Demokratska Republika Alžir

    

 

 

 

Abdellah Demdoum, Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir

 

 

Mohamed Sadoun, Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Laboratorija za proučavanje konstrukcija i mehanike materijala, Maskara, Narodna Demokratska Republika Alžir

 

 

Houda Beghdad, Univerzitet „Mustafa Stamboli”, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir

 

 

Reference

-AASHTO. 2017. AASHTO LRFD Bridge Design Specifications, 8th Edition. Washington, USA: American Association of State Highway and Transportation Officials [online]. Available at: https://store.transportation.org/Common/DownloadContentFiles?id=1648 [Accessed: 10 February 2024].

Ambraseys, N.N. & Douglas, J. 2003. Near-field horizontal and vertical earthquake ground motions. Soil Dynamics and Earthquake Engineering, 23(1), pp.1-18. Available at: https://doi.org/10.1016/S0267-7261(02)00153-7.

An, H. & Lee, J.-H. 2022. Deep neural network for prediction of time-history seismic response of bridges. Structural Engineering and Mechanics, 83(3), pp.401-413. Available at: https://doi.org/10.12989/sem.2022.83.3.401.

Aryan, H. & Ghassemieh, M. 2020. Numerical assessment of vertical ground motion effects on highway bridges. Canadian Journal of Civil Engineering, 47(7), pp.790-800. Available at: https://doi.org/10.1139/cjce-2019-0096.

Behnamfar, F. & Velni, M.T. 2019. A rapid screening method for selection and modification of ground motions for time history analysis. Earthquakes and Structures, 16(1), pp.29-39. Available at: https://doi.org/10.12989/EAS.2019.16.1.029.

Bhanu, V., Ozcebe, A.G. & Smerzini, C. 2018. A study on vertical component of earthquake ground motion and its effects on a bridge. In: 16th European conference on earthquake engineering, Thessaloniki, Greece, June 18-21.

Bozorgnia, Y., Niazi, M. & Campbell, K.W. 1995. Characteristics of Free-Field Vertical Ground Motion during the Northridge Earthquake. Earthquake Spectra, 11(4), pp.515-525. Available at: https://doi.org/10.1193/1.1585825.

Button, M.R., Cronin, C.J. & Mayes, R.L. 2002. Effect of Vertical Motions on Seismic Response of Highway Bridges. Journal of Structural Engineering, 128(12), pp.1551-1564. Available at: https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1551).

Campbell, K.W. 2004. Updated Near-Source Ground-Motion (Attenuation) Relations for the Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra. Bulletin of the Seismological Society of America, 94(6), pp.2417-2417. Available at: https://doi.org/10.1785/0120040147.

Collier, C. & Elnashai, A.S. 2001. A procedure for combining vertical and horizontal seismic action effects. Journal of Earthquake Engineering, 5(4), pp.521-539. Available at: https://doi.org/10.1142/S136324690100056X.

De Luca, F.D. & Lombardi, L. 2017. EC8 design through linear time history analysis versus response spectrum analysis – is it an enhancement for PBEE? In: 16th World Conference on Earthquake (16WCEE), Santiago, Chile, Paper No. 1155, January 9-13 [online]. Available at: https://www.wcee.nicee.org/wcee/article/16WCEE/WCEE2017-1155.pdf [Accessed: 10 February 2024].

Di Sarno, L., Elnashai, A.S. & Manfredi, G. 2011. Assessment of RC columns subjected to horizontal and vertical ground motions recorded during the 2009 L’Aquila (Italy) earthquake. Engineering Structures, 33(5), pp.1514-1535. Available at: https://doi.org/10.1016/j.engstruct.2011.01.023.

Elnashai, A. & Papazoglou, A. 1997. Procedure and spectra for analysis of RC structures subjected to strong vertical earthquake loads. Journal of Earthquake Engineering, 01(01), pp.121-155. Available at: https://doi.org/10.1142/S1363246997000076.

-European Standard. 2011. EN 1998-2:2005+A2 - Eurocode 8: Design of structures for earthquake resistance - Part 2: Bridges [online]. Available at: https://www.phd.eng.br/wp-content/uploads/2014/12/en.1998.2.2005.pdf [Accessed: 10 February 2024].

Fouché, P., Bruneau, M. & Chiarito, V. 2017. Dual-Hazard Blast and Seismic Behavior of Concrete-Filled Double-Skin Steel Tubes Bridge Pier. Journal of Structural Engineering, 143(12), art.number:04017155. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001883.

Guo, W., Yang, S., Jiang, L., Yu, Z., Zeng, C., Wang, Y., Huang, R., Wu, S. & Ren, S. 2023. Effect of near-fault vertical seismic excitation on running safety of trains on high-speed railway bridges. Engineering Structures, 296, art.number:116880. Available at: https://doi.org/10.1016/j.engstruct.2023.116880.

Kim, S.J., Holub, C.J. & Elnashai, A.S. 2011a. Analytical Assessment of the Effect of Vertical Earthquake Motion on RC Bridge Piers. Journal of Structural Engineering, 137(2), pp.252-260. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000306.

Kim, S.J., Holub, C.J. & Elnashai, A.S. 2011b. Experimental investigation of the behavior of RC bridge piers subjected to horizontal and vertical earthquake motion. Engineering Structures, 33(7), pp.2221-2235. Available at: https://doi.org/10.1016/j.engstruct.2011.03.013.

Kunnath, S.K., Erduran, E., Chai, Y.H. & Yashinsky, M. 2008. Effect of near-fault vertical ground motions on seismic response of highway overcrossings. Journal of Bridge Engineering, 13(3), pp.282-290. Available at: https://doi.org/10.1061/(ASCE)1084-0702(2008)13:3(282).

Li, H., Gao, X., Liu, Y. & Luo, Y. 2017. Seismic performance of new-type box steel bridge piers with embedded energy-dissipating shell plates under tri-directional seismic coupling action. International Journal of Steel Structures, 17(1), pp.105-125. Available at: https://doi.org/10.1007/s13296-015-0192-z.

Li, R. & Yao, C. 2020. Effects of Vertical Earthquake Ground Motions on Seismic Response of Steel-Concrete Plate Composite Beam Bridges. In: 2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Vientiane, Laos, pp.114-117, January 11-12. Available at: https://doi.org/10.1109/ICITBS49701.2020.00032.

Li, X., Zhang, D.-Y., Yan, W.-M., Xie, W.-C. & Pandey, M.D. 2014. Effects of model updating on the estimation of stochastic seismic response of a concrete-filled steel tubular arch bridge. Structure and Infrastructure Engineering, 10(12), pp.1620-1637. Available at: https://doi.org/10.1080/15732479.2013.837079.

Matsuzaki, H., Kumagai, Y. & Kawashima, K. 2012. Effect of Strong Vertical Excitation on the Seismic Performance of RC Bridge Columns. In: 15th World Conference in Earthquake Engineering, Lisbon, Portugal, September 24-28 [online]. Available at: https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2696.pdf [Accessed: 10 February 2024].

-Ministère des Travaux Publics Algérie. 2008. Regles parasismiques applicables au domaine des ouvrages d’art RPOA 2008 - Document technique reglementaire DTR. Algérie: Ministère des Travaux Publics Algérie.

Newmark, N.M., Blume, J.A. & Kapur, K.K. 1973. Seismic Design Spectra for Nuclear Power Plants. Journal of the Power Division, 99(2), pp.287-303. Available at: https://doi.org/10.1061/JPWEAM.0000753.

Newmark, N.M. & Hall, W.J. 1982. Earthquake spectra and design, First Edition. Oakland, CA, USA: Earthquake Engineering Research Institute. ISBN: 978-0943198224.

Nouri, G., Shahrouzi, M. & Farhadi, E. 2020. Seismic performance of bridges to a spatially varying horizontal and vertical earthquake ground motion. AUT Journal of Civil Engineering, 4(1), pp.27-36. Available at: https://doi.org/10.22060/ajce.2019.15333.5536.

Papazoglou, A.J. & Elnashai, A.S. 1996. Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Engineering & Structural Dynamics, 25(10), pp.1109-1137. Available at: https://doi.org/10.1002/(SICI)1096-9845(199610)25:10<1109::AID-EQE604>3.0.CO;2-0.

-PEER ground motion database. 2024. PEER Ground Motion Database - Pacific Earthquake Engineering Research Center. Ngawest2.berkeley.edu [online]. Available at: https://ngawest2.berkeley.edu/ [Accessed: 10 February 2024].

Pollino, M. & Bruneau, M. 2010. Seismic Testing of a Bridge Steel Truss Pier Designed for Controlled Rocking. Journal of Structural Engineering, 136(12), pp.1523-1532. Available at: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000261.

Saadeghvaziri, M.A. & Foutch, D.A. 1988. Inelastic response of R/C bridges under horizontal and vertical earthquake motions. Urbana, Illinois, USA: Department of Civil Engineering, University of Illinois at Urbana-Champaign [online]. Available at: https://www.ideals.illinois.edu/items/14178 [Accessed: 10 February 2024].

Shrestha, B. 2015. Seismic response of long span cable-stayed bridge to near-fault vertical ground motions. KSCE Journal of Civil Engineering, 19(1), pp.180-187. Available at: https://doi.org/10.1007/s12205-014-0214-y.

Tonyali, Z., Ates, S. & Adanur, S. 2019. Spatially variable effects on seismic response of the cable-stayed bridges considering local soil site conditions. Structural Engineering and Mechanics, 70(2), pp.143-152 Available at: https://doi.org/10.12989/sem.2019.70.2.143.

Veletzos, M.J., Restrepo, J.I. & Seible, F. 2006. Seismic response of precast segmental bridge superstructures. California. Department of Transportation [online]. Available at: https://rosap.ntl.bts.gov/view/dot/27611 [Accessed: 10 February 2024].

Wilson, T., Chen, S. & Mahmoud, H. 2015. Analytical case study on the seismic performance of a curved and skewed reinforced concrete bridge under vertical ground motion. Engineering Structures, 100, pp.128-136. Available at: https://doi.org/10.1016/j.engstruct.2015.06.017.

Xin, L., Li, X., Zhang, Z. & Zhao, L. 2019. Seismic behavior of long-span concrete-filled steel tubular arch bridge subjected to near-fault fling-step motions. Engineering Structures, 180, pp.148-159. Available at: https://doi.org/10.1016/j.engstruct.2018.11.006.

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi