Kompresija JPEG i BPG bez gubitka vizuelnih informacija na primeru baze KonJND-1k
Sažetak
Uvod/cilj: U ovom radu predstavljeni su rezultati istraživanja kompresije bez gubitka vizuelnih informacija. Ona je od posebnog značaja jer se njome ostvaruje visok stepen kompresije, pri čemu vizuelni kvalitet slike nije narušen, pa su krajnji korisnici veoma zadovoljni. Analiza je sprovedena korišćenjem obimne, javno dostupne baze KonJND-1k, koja sadrži rezultate subjektivnih testova na komprimovanim slikama JPEG i BPG.
Metode: Zahvaljujući dostupnosti slika baze KonJND-1k analizirana je zavisnost objektivnih mera procene kvaliteta slike od parametara kojima se kontroliše stepen kompresije izvornih signala (faktor kvaliteta kod JPEG, odnosno parametar kvantizacije kod BPG). Rezultati subjektivnih testova iskorišćeni su za detaljniju analizu graničnih i tipičnih vrednosti parametara kojima se kontrolišu ova dva tipa kompresije, kao i za analizu odgovarajućih vrednosti objektivnih skorova kvaliteta. Takođe, izvršena je identifikacija pouzdanih obeležja za predikciju granice između kompresije bez i sa gubitkom vizuelnih informacija. U tu svrhu korišćen je stepen slaganja između predikcija i tačnih vrednosti vršnog odnosa signal/šum (PSNR) i reprezentacije slike u bitima po pikselu (bpp). Stepen kompresije ostvaren primenom kompresije bez gubitka vizuelnih informacija iskorišćen je za poređenje tehnika JPEG i BPG.
Rezultati: Pokazano je da se granica između kompresije bez i sa gubitkom vizuelnih informacija nalazi u širokom opsegu vrednosti PSNR (oko 20 dB kod JPEG i 15 dB kod BPG). Odgovarajuće vrednosti faktora kvaliteta slika JPEG na ovoj granici se, takođe, nalaze u širokom opsegu od 31 do 79, sa grupisanjem između 40 i 45. Vrednosti parametra kvantizacije grupišu se oko 30, a granične vrednosti su 25 i 34. Takođe, potvrđeno je da se ova granica može pouzdano odrediti na osnovu jednostavnih obeležja izvedenih iz originalne nekomprimovane slike. Pokazalo se da su najbolji prediktori gradijentna obeležja poznata kao prostorna frekvencija i prostorna informacija. Stepen slaganja predikcija dobijenih iz ovih obeležja sa tačnim vrednostima PSNR i bpp kod oba tipa kompresije veći je od 85%. Komparativnom analizom dokazano je da se primenom kompresije BPG, u proseku, može ostvariti duplo veći stepen kompresije bez gubitka vizuelnih informacija nego primenom kompresije JPEG (80 nasuprot 40).
Zaključak: Iako je ostvaren visok stepen slaganja između predikcija i tačnih vrednosti PSNR i bpp na granici između kompresije bez i sa gubitkom vizuelnih informacija, postoji potreba za razvojem novih pristupa predikcije, naročito kod tehnike BPG koja se kroz stepen kompresije pokazala superiornom u odnosu na tehniku JPEG. Postojeće baze koje se koriste za analizu kompresije bez gubitka vizuelnih informacija su sa slikama iz vidljivog dela elektromagnetnog spektra. Imajući u vidu sve veću upotrebu slika iz infracrvenog dela spektra, postoji potreba za sprovođenjem sličnih testova u ovom spektralnom opsegu.
Reference
Alakuijala, J., Boukortt, S., Ebrahimi, T., Kliuchnikov, E., Sneyers, J., Upenik, E., Vandevenne, L., Versari, L. & Wassenberg, J. 2020. Benchmarking JPEG XL image compression. In: Schelkens, P. & Kozacki, T. (Eds.) Proceedings SPIE Photonics Europe: Optics, Photonics and Digital Technologies for Imaging Applications VI, Online Only, France, 11353, pp.113530X-1-113530X-20, April 06-10. Available at: https://doi.org/10.1117/12.2556264.
Bellard, F. 2018. BPG Image format. Bellard.org, 21 April [online]. Available at: https://bellard.org/bpg/ [Accessed: 05. April 2024].
Bull, D. & Zhang, F. 2021. Intelligent Image and Video Compression: Communicating Pictures, 2nd Edition. Academic Press. ISBN: 9780128203545.
Bondžulić, B., Stojanović, N., Petrović, V., Pavlović, B. & Miličević, Z. 2021. Efficient Prediction of the First Just Noticeable Difference Point for JPEG Compressed Images. Acta Polytechnica Hungarica, 18(8), pp.201-220. Available at: https://doi.org/10.12700/APH.18.8.2021.8.11.
Bondžulić, B., Bujaković, D., Li, F. & Lukin, V. 2022. On strange images with application to lossy image compression. Radioelectronic and Computer Systems, 104(4), pp.143-152. Available at: https://doi.org/10.32620/reks.2022.4.11.
Bondžulić, B., Pavlović, B., Stojanović, N., Petrović, V. & Bujaković, D. 2024. A simple and reliable approach to providing a visually lossless image compression. The Visual Computer, International Journal of Computer Graphics, 40, pp.3747-3763. Available at: https://doi.org/10.1007/s00371-023-03062-y.
Cai, Y.-Q., Zou, H.-X. & Yuan, F. 2019. Adaptive compression method for underwater images based on perceived quality estimation. Frontiers of Information Technology & Electronic Engineering, 20(5), pp.716-730. Available at: https://doi.org/10.1631/FITEE.1700737.
Corchs, S.E., Ciocca, G., Bricolo, E. & Gasparini, F. 2016. Predicting complexity perception of real world images. PLoS ONE, 11(6), e0157986. Available at: https://doi.org/10.1371/journal.pone.0157986.
Fan, C., Lin, H., Hosu, V., Zhang, Y., Jiang, Q., Hamzaoui, R. & Saupe, D. 2019. SUR-Net: Predicting the satisfied user ratio curve for image compression with deep learning. In: 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, pp.1-6, June 5-7. Available at: https://doi.org/10.1109/QoMEX.2019.8743204.
Fiorucci, F., Baruffa, G. & Frescura, F. 2012. Objective and subjective quality assessment between JPEG XR with overlap and JPEG 2000. Journal of Visual Communication and Image Representation, 23(6), pp.835-844. Available at: https://doi.org/10.1016/j.jvcir.2012.04.011.
Goerner, F.L., Duong, T., Stafford, R.J. & Clarke, G.D. 2013. A comparison of five standard methods for evaluating image intensity uniformity in partially parallel imaging MRI. Medical Physics, 40(8), art.number:082302. Available at: https://doi.org/10.1118/1.4816306.
Hasler, D. & Suesstrunk, S.E. 2003. Measuring colourfulness in natural images. In: Rogowitz, B.E. & Pappas, T.N. (Eds.) Proceedings Electronic Imaging: Human Vision and Electronic Imaging VIII, Santa Clara, CA, USA, 5007, pp.87-95, January 20-24. Available at: https://doi.org/10.1117/12.477378.
Jin, L., Lin, J.Y., Hu, S., Wang, H., Wang, P., Katsavounidis, I., Aaron, A. & Kuo, C.-C. J. 2016. Statistical study on perceived JPEG image quality via MCL-JCI dataset construction and analysis. In: IS&T International Symposium on Electronic Imaging – Image Quality and System Performance XIII, San Francisco, CA, USA, art.ID:art00026, February 14-18. Available at: https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-222.
Kovalenko, B., Lukin, V., Kryvenko, S., Naumenko, V. & Vozel, B. 2022. Prediction of parameters in optimal operation point for BPG-based lossy compression of noisy images. Ukrainian Journal of Remote Sensing, 9(2), pp.4-12. Available at: https://doi.org/10.36023/ujrs.2022.9.2.212.
Kovalenko, B. & Lukin, V. 2023. Analysis of distortions due to BPG-based lossy compression of noise-free and noisy images. Herald of Khmelnytskyi National University. Technical Sciences, 325(1), pp.128-135.
Krivenko, S.S., Krylova, O., Bataeva, E. & Lukin, V.V. 2018. Smart lossy compression of images based on distortion prediction. Telecommunications and Radio Engineering, 77(17), pp.1535-1554. Available at: https://doi.org/10.1615/TelecomRadEng.v77.i17.40.
Li, F., Lukin, V., Okarma, K. & Fu, Y. 2021. Providing a Desired Quality of BPG Compressed Images for FSIM Metric. In: 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, pp.10-14, December 15-17. Available at: https://doi.org/10.1109/ATIT54053.2021.9678522.
Li, F., Lukin, V., Ieremeiev, O. & Okarma, K. 2022. Quality control for the BPG lossy compression of three-channel remote sensing images. Remote Sensing, 14(8), art.number:1824. Available at: https://doi.org/10.3390/rs14081824.
Li, F., Abramov, S., Dohtiev, I. & Lukin, V. 2024. Advantages and drawbacks of two-step approach to providing desired parameters in lossy image compression. Advanced Information Systems, 8(1), pp.57-63. Available at: https://doi.org/10.20998/2522-9052.2024.1.07.
Lin, H., Hosu, V., Fan, C., Zhang, Y., Mu, Y., Hamzaoui, R. & Saupe, D. 2020. SUR-FeatNet: Predicting the satisfied user ratio curve for image compression with deep feature learning. Quality and User Experience, 5, art.number:5. Available at: https://doi.org/10.1007/s41233-020-00034-1.
Lin, H., Chen, G., Jenadeleh, M., Hosu, V., Reips, U.-D., Hamzaoui, R. & Saupe, D. 2022. Large-Scale Crowdsourced Subjective Assessment of Picturewise Just Noticeable Difference. IEEE Transactions on Circuits and Systems for Video Technology, 32(9), pp.5859-5873. Available at: https://doi.org/10.1109/TCSVT.2022.3163860.
Liu, X., Chen, Z., Wang, X., Jiang, J. & Kwong, S. 2018. JND-Pano: Database for just noticeable difference of JPEG compressed panoramic images. In: Hong, R., Cheng, W.H., Yamasaki, T., Wang, M. & Ngo, C.W. (Eds.) Advances in Multimedia Information Processing. PCM 2018. Lecture Notes in Computer Science, 11164, pp.458-468. Cham: Springer. Available at: https://doi.org/10.1007/978-3-030-00776-8_42.
Liu, H., Zhang, Y., Zhang, H., Fan, C., Kwong, S., Kuo C.-C. J. & Fan, X. 2020. Deep Learning-Based Picture-Wise Just Noticeable Distortion Prediction Model for Image Compression. IEEE Transactions on Image Processing, 29, pp.641-656. Available at: https://doi.org/10.1109/TIP.2019.2933743.
Liu, Y., Jin, J., Xue, Y. & Lin, W. 2023. The First Comprehensive Dataset with Multiple Distortion Types for Visual Just-Noticeable Differences. In: 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, pp.2820-2824, October 08-11. Available at: https://doi.org/10.1109/ICIP49359.2023.10221977.
Mikhailiuk, A., Ye, N. & Mantiuk, R.K. 2021. The effect of display brightness and viewing distance: A dataset for visually lossless image compression. In: IS&T International Symposium on Electronic Imaging: Human Vision and Electronic Imaging, Virtual Event, 33, art.ID:art00005, January 21st. Available at: https://doi.org/10.2352/ISSN.2470-1173.2021.11.HVEI-152.
Mittal, A., Moorty, A.K. & Bovik, A.C. 2012. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Transactions on Image Processing, 21(12), pp.4695-4708. Available at: https://doi.org/10.1109/TIP.2012.2214050.
Pavlović, B., Bondžulić, B., Stojanović, N., Petrović, V. & Bujaković, D. 2023. Prediction of the first just noticeable difference point based on simple image features. In: 2023 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, pp.125-130, May 29-31. Available at: https://doi.org/10.1109/ZINC58345.2023.10173865.
Ponomarenko, N., Silvestri, F., Egiazarian, K., Carli, M., Astola, J. & Lukin, V. 2007. On between-coefficient contrast masking of DCT basis functions. In: 3rd International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), Scottsdale, Arizona, USA, pp.1-4, January 25-26 [online]. Available at: http://ponomarenko.info/vpqm07_p.pdf [Accessed: 05. April 2024].
Poth, M., Trpovski, Ž. & Lončar-Turukalo, T. 2020. Analysis and improvement of JPEG compression performance using custom quantization and block boundary classifications. Acta Polytechnica Hungarica, 17(6), pp.171-191. Available at: https://doi.org/10.12700/APH.17.6.2020.6.10.
Saha, S. & Vemuri, R. 2000. An analysis on the effect of image features on lossy coding performance. IEEE Signal Processing Letters, 7(5), pp.104-107. Available at: https://doi.org/10.1109/97.841153.
Shen, X., Ni, Z., Yang, W., Zhang, X., Wang, S. & Kwong, S. 2020. A JND Dataset Based on VVC Compressed Images. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), London, United Kingdom, pp.1-6, July 6-10. Available at: https://doi.org/10.1109/ICMEW46912.2020.9105955.
Shen, X., Ni, Z., Yang, W., Zhang, X., Wang, S. & Kwong, S. 2021. Just Noticeable Distortion Profile Inference: A Patch-Level Structural Visibility Learning Approach. IEEE Transactions on Image Processing, 30, pp.26-38. Available at: https://doi.org/10.1109/TIP.2020.3029428.
Testolina, M., Hosu, V., Jenadeleh, M., Lazzarotto, D., Saupe, D. & Ebrahimi T. 2023. JPEG AIC-3 Dataset: Towards Defining the High Quality to Nearly Visually Lossless Quality Range. In: 2023 15th International Conference on Quality of Multimedia Experience (QoMEX), Ghent, Belgium, pp.55-60, June 20-22. Available at: https://doi.org/10.1109/QoMEX58391.2023.10178554.
Wang, Z. & Bovik, A.C. 2009. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Processing Magazine, 26(1), pp.98-117. Available at: https://doi.org/10.1109/MSP.2008.930649.
Wang, Z., Bovik, A.C., Sheikh, H.R. & Simoncelli, E.P. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), pp.600-612. Available at: https://doi.org/10.1109/TIP.2003.819861.
Yu, H. & Winkler, S. 2013. Image complexity and spatial information. In: 2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX), Klagenfurt am Worthersee, Austria, pp.12-17, July 3-5. Available at: https://doi.org/10.1109/QoMEX.2013.6603194.
Zemliachenko, A., Ponomarenko, N., Lukin, V., Egiazarian, K. & Astola, J. 2016. Still image/video frame lossy compression providing a desired visual quality. Multidimensional Systems and Signal Processing, 27(3), pp.697-718. Available at: https://doi.org/10.1007/s11045-015-0333-8.
Sva prava zadržana (c) 2024 Boban P. Bondžulić, Nenad M. Stojanović, Vladimir V. Lukin, Sergii S. Kryvenko
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).