Novo ispitivanje korišćeno za predviđanje pritiska prskanja prave korodirane cevi pod unutrašnjim pritiskom

  • Aicha Metehri Univerzitet Sidi Bel Abes, Tehnološki fakultet, Odsek mašinstva, Laboratorija za fizičku mehaniku materijala, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0002-2221-6833
  • Belaïd Mechab Univerzitet Sidi Bel Abes, Tehnološki fakultet, Odsek mašinstva, Laboratorija za fizičku mehaniku materijala, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0000-7483-5527
  • Bel Abbes Bachir Bouiadjra Univerzitet Sidi Bel Abes, Tehnološki fakultet, Odsek mašinstva, Laboratorija za fizičku mehaniku materijala, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-1925-7194
Ključne reči: defekat korozije, čelična cev, unutrašnji pritisak, lom, napon, modelovanje

Sažetak


Uvod/cilj: Sve je veće interesovanje za integritet cevovoda kao i za njegov efekat na ekonomske i sigurnosne aspekte. U ovoj studiji ispituje se proces procene korozije radi identifikacije preostalog strukturnog integriteta korodiranih tankozidnih cevovoda.

Metode: Kreiran je model evaluacije korozije koji može da analizira deterioraciju čeličnih cevi usled unutrašnjeg pritiska. Korišćen je pristup konačnih elemenata radi izrade modela za predviđanje pritiska prskanja pravih cevi bez defekata. Primenjena je analitička i numerička analiza, kao i matematički metod ekstrapolacije.

Rezultati: Rad prikazuje uticaj nekoliko faktora na integritet cevi kao što su dubina defekta, debljina cevi, oblik, veličina i pozicija defekta, kao i međusobni uticaj unutrašnjih i spoljašnjih defekata. Prikazan je i uticaj spoljašnjih defekata na sveukupni integritet.

Zaključak: Zaključuje se da se model kriterijuma loma cevi usled korozije (PCORRC) i model predstavljen u ovoj studiji podudaraju sa analitičkim rešenjem iz literature. To ima ogroman značaj u oblasti projektovanja konstrukcija i procene sigurnosti.

Reference

Abyani, M., Bahaari, M.R., Zarrin, M. & Nasseri, M. 2022. Predicting failure pressure of corroded offshore pipelines using an efficient finite element-based algorithm and machine learning techniques. Ocean Engineering, 254, art.number:111382. Available at: https://doi.org/10.1016/j.oceaneng.2022.111382.

Amaya-Gómez, Sánchez-Silva, M., Bastidas-Arteaga, E., Schoefs, F. & Muñoz, F. 2019. Reliability assessments of corroded pipelines based on internal pressure – A review. Engineering Failure Analysis. 98, pp.190-214. Available at: https://doi.org/10.1016/j.engfailanal.2019.01.064.

-ASME. 2012. B31 - Manual for Determining the Remaining Strength of Corroded Pipelines [online]. Available at: https://www.asme.org/codes-standards/find-codes-standards/b31g-manual-determining-remaining-strength-corroded-pipelines/2012/pdf [Accessed: 09 April 2024]. ISBN: 978079183448.

Deng, K., Yang, P., Bing, L., Lin, Y. & Jiandong, W. 2021. Through-wall yield ductile burst pressure of high-grade steel tube and casing with and without corroded defect. Marine Structures, 76, art.number:102902. Available at: https://doi.org/10.1016/J.Marstruc.2020.102902.

-DNV. 2021. DNV-RP-F101 Corroded pipelines, Recommended practice, Edition 2019-09 - Amended 2021-09. dnv.com [online]. Available at: https://www.dnv.com/oilgas/download/dnv-rp-f101-corroded-pipelines/ [Accessed: 09 April 2024].

Fezazi, A.I., Mechab, B., Salem, M. & Serier, B. 2021. Numerical prediction of the ductile damage for axial cracks in pipe under internal pressure. Frattura ed Integrità Strutturale, 15(58), pp.231-241. Available at: https://doi.org/10.3221/IGF-ESIS.58.17.

Guidara, M.A., Bouaziz, M.A., Dallali, M., Schmitt. C., Haj Taieb, E. & Azari, Z. 2018. HDPE Pipe Failure Analysis Under Over pressure in Presence of Defect. In: Haddar, M., Chaari, F., Benamara, A., Chouchane, M., Karra, C. & Aifaoui, N. (Eds.) Design and Modeling of Mechanical Systems—III. CMSM 2017. Lecture Notes in Mechanical Engineering, pp.1027-1038. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-66697-6_101.

-Hibbitt, Karlsson & Sorensen, Inc. 2014. ABAQUS/CAE, User’s Manual, Ver 6.14. Hibbitt, Karlsson & Sorensen, Inc.

Jiang, F. & Zhao, E. 2022. An integrated risk analysis model for corroded pipelines subjected to internal pressures: Considering the interacting effects. Ocean Engineering, 247, art.number:110683. Available at: https://doi.org/10.1016/j.oceaneng.2022.110683.

Mechab, Be,. Chioukh, N., Mechab, Bo. & Serier, B. 2018. Probabilistic Fracture Mechanics for Analysis of Longitudinal Cracks in Pipes under Internal Pressure. Journal of Failure Analysis and Prevention, 18, pp.1643-1651. Available at: https://doi.org/10.1007/S11668-018-0564-8.

Mechab, B., Salem, M., Medjahdi, M. & Serier, B. 2020. Probabilistic Elastic-plastic Fracture Mechanics Analysis of Propagation of Cracks in Pipes under Internal Pressure. Frattura ed Integrità Strutturale,14(54), pp.202-210. Available at: https://doi.org/10.3221/IGF-ESIS.54.15.

Mechab, B., Serier, B., Bachir Bouiadjra, B.A., Kaddouri, K. & Feaugas, X. 2011. Linear and non-linear analyses for semi-elliptical surface cracks in pipes under bending. International Journal of Pressure Vessels and Piping, 88(1), pp.57-63. Available at: https://doi.org/10.1016/J.Ijpvp.2010.11.001.

Mechab, B., Serier, B., Kaddouri, K., Bachir Bouiadjra, B.A. 2014. Probabilistic elastic plastic analysis of cracked pipes subjected to internal pressure loads. Nuclear Engineering and Design, 275, pp.281-286. Available at: https://doi.org/10.1016/j.nucengdes.2014.05.008.

Metehri, A., Madani, K. & Lousdad, A. 2018. Effect of crack position and size of particle on SIF in SiC particles reinforced Al composite. Frattura ed Integrità Strutturale, 13(48), pp.152-160. Available at: https://doi.org/10.3221/IGF-ESIS.48.18.

Muthanna, B.G.N., Bouledroua, O., Meriem-Benziane, M., Razavi Setvati, M. & Djukic, M.B. 2021. Assessment of corroded API 5L X52 pipe elbow using a modified failure assessment diagram. International Journal of Pressure Vessels and Piping, 190, art.number:104291. Available at: https://doi.org/10.1016/J.Ijpvp.2020.104291.

Salem, M., Mechab, B., Berrahou, M., Bachir Bouiadjra, B.A. & Serier, B. 2019. Failure Analyses of Propagation of Cracks Repaired Pipe Under Internal Pressure. Journal of Failure Analysis and Prevention, 19, pp.212-218. Available at: https://doi.org/10.1007/s11668-019-00592-3.

Teoh, C.Y., Pang, J.S., Abdul Hamid, M.N, Ooi, L.E. & Tan, W.H. 2022. Ultrasonic guided wave testing on pipeline corrosion detection using torsional T(0,1) guided waves. Journal of Mechanical Engineering and Sciences (JMES), 16(4), pp.9157-9166. Available at: https://doi.org/10.15282/jmes.16.4.2022.01.0725.

Wang, Z., Zhou, Z., Xu, W., Yang, L., Zhang, B. & Li, Y. 2020. Study on inner corrosion behavior of high strength product oil pipelines. Engineering Failure Analysis, 115, art.number:104659. Available at: https://doi.org/10.1016/J.Engfailanal.2020.104659.

Yeom, K.J., Lee. Y.-K., Oh, K.H. & Kim, W.S. 2015. Integrity assessment of a corroded API X70 pipe with a single defect by burst pressure analysis. Engineering Failure Analysis, 57, pp.553-561. Available at: https://doi.org/10.1016/J.Engfailanal.2015.07.024.

Yi, S., Xiao, Z., Can, F., Junyan, H. & Cheng, Y.F. 2022. A novel model for prediction of burst capacity of corroded pipelines subjected to combined loads of bending moment and axial compression. International Journal of Pressure Vessels and Piping, 196, art.number:104621. Available at: https://doi.org/10.1016/J.Ijpvp.2022.104621.

Zelmati, D., Bouledroua, O., Hafsi, Z. & Djukic, M.B. 2020. Probabilistic analysis of corroded pipeline under localised corrosion defects based on the intelligent inspection tool. Engineering Failure Analysis, 115, art.number:104683. Available at: https://doi.org/10.1016/j.engfailanal.2020.104683.

Zhao, J., Lv, Y. & Cheng, Y.F. 2022. A new method for assessment of burst pressure capacity of corroded X80 steel pipelines containing a dent. International Journal of Pressure Vessels and Piping, 199, art.number:104742. Available at: https://doi.org/10.1016/j.ijpvp.2022.104742.

Zhou, W., Bao, J., Cui, X.Z. & Hong, H.P. 2021. Modeling and simulating non homogeneous non-Gaussian corrosion fields on buried pipelines and its use in predicting burst capacities of corroded pipelines. Engineering Structures, 245, art.number:112957. Available at: https://doi.org/10.1016/j.engstruct.2021.112957.

Zhuwu, Z., Liping, G. & Cheng, Y.F. 2020. Interaction betweeninternal and externaldefects on pipelines and its effect on failure pressure. Thin-Walled Structures, 159, art.number:107230. Available at: https://doi.org/10.1016/J.Tws.2020.107230.

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi