Računarska studija o efikasnosti smanjenja otpora rotirajućih projektila sa različitim konfiguracijama zadnjeg tela pri supersoničnim brzinama

  • Tuan Nguyen Military Technical Academy
Ključne reči: numerička simulacija, aerodinamičke karakteristike, smanjenje otpora, konusni boatail, bazna šupljina.

Sažetak


Uvod/cilj: U ovom radu numerički je procenjena efikasnost smanjenja otpora pri nadzvučnim brzinama pet konfiguracija sa različitim zadnjim telom raketa „spiner” koje poseduje  vojska i mornarica. 

Metode: Jednačine Reinolds-Averaged Navier-Stokes sa SST k-ω modelom turbulencije korišćene su za numeričke simulacije. Studije osetljivosti mreže preduzete su kako bi se osigurala nezavisnost rezultata simulacije od veličine mreže. Rezultati simulacije su potvrđeni na osnovu arhivskih eksperimentalnih podataka. Izvršeno je poređenje koeficijenata aerodinamičkog otpora za osnovnu liniju i modifikovana zadnja tela. Vizualizovana su i analizirana polja strujanja oko različitih konfiguracija naknadnog tela.

Rezultati: Rezultati istraživanja su pokazali da su konusni čamac ili kombinacija konusnog čamca sa baznom šupljinom najefikasnije metode koje pokazuju u proseku 10,99%, odnosno 11,96% smanjenje otpora. Sama konfiguracija bazne šupljine je najmanje efikasan metod koji pokazuje prosečno smanjenje otpora od samo 1,33% u poređenju sa osnovnom konfiguracijom. Višestepena konfiguracija naknadnog tela može da ostvari prosečno smanjenje otpora od 2,15% u poređenju sa osnovnom konfiguracijom.

Zaključak: Konfiguracije zadnjeg tela znatno utiču na aerodinamički otpor projektila koji se okreće. Od razmatranih konfiguracija zadnjeg tela kombinacija konusnog repa i bazne šupljine je najefikasniji način da se smanji otpor projektila. Nalazi predstavljeni u ovoj studiji pružili su značajan uvid u bolje razumevanje pasivnih metoda za smanjenje aerodinamičkog otpora.

Reference

Agnone, A. & Prakasam, B. 1987. Hypersonic aerodynamics of nonaxisymmetric boattailed bodies, Journal of Spacecraft and Rockets, vol. 24 (2), pp.181-182. Available at: https://doi.org/10.2514/3.25894.

Agnone, A., Zakkay, V. & Sturek, W. 1982. Effects of boattail geometry on the aerodynamics of hypersonic projectiles, The 20th Aerospace Sciences Meeting, pp. 1-16. Available at: https://doi.org/10.2514/6.1982-172.

El-Awwad, E., Ibrahim, A.Z., El-Sebae, A.M. & Riad, A.M. 2012. Ballistic performance of a projectile with a developed boattail, The International Conference on Applied Mechanics and Mechanical Engineering, vol. 15, pp. 1-18. Available at: https://journals.ekb.eg/article_36915_e9109396512e5942714152745c52ba7d.pdf.

El-Awwad, E., Ibrahim, A.Z., El-Sebae, A.M. & Riad, A.M. 2012. Numerical study on flow characteristics of air past a projectile with a triangular base, The International Conference on Applied Mechanics and Mechanical Engineering, vol. 15, pp. 1-20. Available at: https://amme.journals.ekb.eg/article_36914_f2b014be95b99de0c46a2358f025c9d4.pdf.

El-Awwad, E., Ibrahim, A.Z., El-Sebae, A.M. & Riad, A.M. 2020. Flow computations past a triangular boattailed projectile, Defence Technology, vol. 16(3), pp. 712-719. Available at: https://doi.org/10.1016/j.dt.2019.08.009.

Fu, J. & Liang, S. A. 1994. numerical study of optimal drag reduction for turbulent transonic projectiles using a passive control, International Journal of Computational Fluid Dynamics, vol. 3(3-4), pp. 251-264. Available at: https://doi.org/10.1080/10618569408904510.

Guidos, B. & Sturek, W. 1986. Computational aerodynamic analysis for the design of a spinning non-axisymmetric shell, The 4th Applied Aerodynamics Conference, pp. 368-381. Available at: https://doi.org/10.2514/6.1986-1833.

Guidos, B. & Sturek, W. 1987. Computational aerodynamic analysis for a range-limited 25mm training round, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, Technical Report BRL-TR-2833. Available at: https://apps.dtic.mil/sti/citations/ADA185270.

Howard, F.G. & Wesley, L.G. 1985. Axisymmetric bluff-body drag reduction through geometrical modification, Journal of aircraft, vol. 22(6), pp. 516-522. Available at: https://doi.org/10.2514/3.45158.

Ibrahim, A. & Filippone, A. 2010. Supersonic aerodynamics of a projectile with slot cavities, The Aeronautical Journal, vol. 114(1151), pp. 15-24. Available at: https://doi.org/10.1017/S0001924000003493.

Kayser, L.D. & Sturek, W. 1980. Aerodynamic performance of projectiles with axisymmetric and non-axisymetric boattails, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-MR-03022. Available at: https://apps.dtic.mil/sti/citations/ADA086091.

Kumar, A., Panda, H.S., Biswal, T.K. & Appavuraj R. 2014. Flow around a conical nose with rounded tail projectile for subsonic, transonic, and supersonic flow regimes: A numerical study, Defence Science Journal, vol. 64(6), pp. 509-516. Available at: DOI:10.14429/dsj.64.8111.

Lu, H. & Zhang, Q. 2022. Numerical investigation on aerodynamic drag reducing of slender body with non-cylindrical base cavity, Proceedings of the 2022 International Conference on Smart Manufacturing and Material Processing, pp. 227-234. Available at: Doi:10.3233/ATDE220838.

Mathur, N.B. & Viswanath, P.R. 2004. Drag reduction from square base afterbodies at high speeds, Journal of aircraft, vol. 41(4), pp. 811-820. Available at: https://doi.org/10.2514/1.532.

Matsson, J.E. 2023. An Introduction to Ansys Fluent 2023. Mission, KS, USA: SDC Publications. ISBN: 978-1-63057-648-6.

Menter, F.R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, vol. 32(8), pp. 1598-1605. Available at: DOI: 10.2514/3.12149.

Nguyen, Q.T. 2025. A comparative study of turbulence models for predicting the aerodynamic drag of a spin-stabilized projectile, Vojnotehnički glasnik, vol. 73(1), pp. 115-135. Available at: doi: 10.5937/vojtehg73-54634.

Platou, A.S. 1975. Improved projectile boattail, Journal of Spacecraft and Rockets, vol. 12(12), pp. 727-732. Available at: https://doi.org/10.2514/3.57040.

Stahara, S., Elliottt, J. & Spreiter, J. 1981. Transonic flow past various boattail projectiles-Equivalence rule analyses, The 19th Aerospace Sciences Meeting, pp. 1-16. Available at: https://doi.org/10.2514/6.1981-332.

Stahara, S., Elliottt, J. & Spreiter, J. 1982. Transonic flow past axisymmetric and nonaxisymmetric boatt ail projectiles, AIAA Journal, vol. 20(10), pp.1329-1337. Available at: https://doi.org/10.2514/3.51192.

Viswanath, P.R. 1988. Passive devices for axisymmetric base drag reduction at transonic speeds, Journal of aircraft, vol. 25(3), pp. 258-262. Available at: https://doi.org/10.2514/3.45586.

Viswanath, P.R. & Patil, S.R. 1990. Effectiveness of passive devices for axisymmetric base drag reduction at Mach 2, Journal of Spacecraft and Rockets, vol. 27(3), pp. 234-237. Available at: https://doi.org/10.2514/3.26130.

Viswanath, P.R. 1996. Flow management techniques for base and afterbody drag reduction, Progress in Aerospace Sciences, vol. 32(2), pp. 79-129. Available at: https://doi.org/10.1016/0376-0421(95)00003-8.

Objavljeno
2025/12/08
Rubrika
Originalni naučni radovi