Komparativna studija dva različita zeolita, BEA i ZSM-5, modifikovana bakrom i gvožđem tokom oksidacije fenola vodonik-peroksidom

Impact of Copper and Iron Ion Exchanged Zeolites BEA and ZSM-5 on the Catalytic Degradation of Phenol Using Hydrogen Peroxid

Ključne reči: ZSM-5, BEA, vodonik-peroksid, oksidacija fenola, heterogena kataliza

Sažetak


Uvod/cilj: Zagađenje vode organskim jedinjenjima kao što je fenol predstavlja značajan ekološki rizik. Cilj ovog istraživanja bio je da se uporedi katalitička efikasnost zeolita ZSM-5 i BEA, modifikovanih gvožđem (Fe) i bakrom (Cu), u mokrojoksidaciji fenola korišćenjem vodonik-peroksida (H₂O₂).

Metod: Zeoliti BEA i ZSM-5 sintetisani su hidrotermalnim metodama, a zatim podvrgnuti jonskoj razmeni radi unošenja Cu²⁺ i Fe²⁺. Katalizatori su okarakterisani tehnikama XRD, FTIR, SEM i XPS. Oksidacija fenola izvođena je na 80°C u vodenoj sredini, sa molarnim odnosom H₂O₂/fenol između 10:1 i 15:1. Reakcioni proizvodi analizirani su metodom HPLC.

Rezultati: Kristalna struktura zeolita očuvana je nakon jonske razmene. Metali su bili ravnomerno raspoređeni na površini. Katalizatori Fe-BEA i Fe-ZSM-5 pokazali su najveću aktivnost (do 99% konverzije), zatim Cu-BEA (88%) i Cu-ZSM-5 (68%). Čisti zeoliti pokazali su nisku aktivnost (<10%). Optimalan odnos H₂O₂/fenol bio je 14:1. Fe-BEA se pokazao kao najefikasniji katalizator, kombinujući visoku aktivnost i bolju difuziju u porama.

Zaključak: Zeoliti modifikovani gvožđem, posebno Fe-BEA, predstavljaju veoma efikasne katalizatore za oksidaciju fenola u vodenoj sredini, nadmašujući kako uzorke modifikovane bakrom, tako i čiste zeolite. Poroznost strukture i priroda metala ključni su faktori koji određuju katalitičke performanse.

Biografije autora

Fatiha TALHAOUI, Univerzitet za nauku i tehnologiju Mohamed Boudiaf, Fakultet hemije, Laboratorija za funkcionalne i nanostrukturisane ekomaterijale, Oran, Alžir

Fatiha Talhaoui je doktorantkinja na Univerzitetu za nauku i tehnologiju Mohamed Boudiaf, Fakultet hemije, Laboratorija za funkcionalne i nanostrukturisane ekomaterijale, Oran, Alžir. Njena istraživanja fokusiraju se na sintezu i karakterizaciju nanostrukturisanih materijala za primenu u oblasti životne sredine i energetike.

Фатиха Хамиди, Fakultet hemije, Laboratorija za funkcionalne i nanostrukturisane ekomaterijale, Oran, Alžir

Fatiha Hamidi je vanredna profesorka na Odeljenju za hemiju, Laboratoriji za funkcionalne i nanostrukturisane ekomaterijale, Univerzitet u Oranu, Alžir. Njena istraživanja fokusiraju se na sintezu i proučavanje nanostrukturisanih materijala za primenu u oblasti životne sredine i energetike.

Франсиско Медина, Odeljenje hemijskog inženjerstva, Univerzitet Rovira i Vigili, Avda dels Països Catalans 26, 43007, Tarragona, Španija

Франсиско Медина је професор на Одељењу хемијског инжењерства на Универзитету Ровира и Вигили, Тарагона, Шпанија. Њена истраживања фокусирају се на пројектовање и оптимизацију хемијских процеса, катализаторске материјале и одрживе технологије.

Reference

Alattar, S.A., Sukkar, K.A. & Alsaffar. M.A. 2024. Phenol removal from wastewater in petroleum refineries by managing flow characteristics and nanocatalyst in ozonized bubble column. Journal of Petroleum Chemistry, 159, pp.159-169. Available at: https://doi.org/10.1134/S0965544124020117

Alejandre, A., Medina, F., Rodriguez, X., Salagre, P. & Sueiras, J. E. 2000. Preparation and activity of copper, nickel and copper-nickel-al mixed oxides via hydrotalcite-like precursors for the oxidation of phenol aqueous solutions. Journal of Studies in Surface Science and Catalysis, 130, pp. 1763-1768. Available at: https://doi.org/10.1016/S0167-2991(00)80456-5

Atoguchi, T., Kanougi, T., Yamamoto, T. & Yao, S. 2004. Phenol oxidation into catechol and hydroquinone over H-MFI, H-MOR, H-USY and H-BEA in the presence of ketone. Journal of Molecular Catalysis A: Chemical, 220(2), pp.183-187.‏ Available at: https://doi.org/10.1016/j.molcata.2003.10.026

Ávila, M.I., Alonso-Doncel, M.M., Briones, L., Gómez-Pozuelo, J., Escola, J.M., Serrano, D.P., Peral, A. & Botas, J.A. 2024. Catalytic upgrading of lignin-derived bio-oils over ion-exchanged H-ZSM-5 and H-beta zeolites. Journal of Catalysis Today, 427, p.114419. Available at : https://doi.org/10.1016/j.cattod.2023.114419

Aziz, A., Park, H., Kim, S. & Kim, K. S. 2016. Phenol and ammonium removal by using Fe-ZSM-5 synthesized by ammonium citrate iron source. International Journal of Environmental Science and Technology, 13, pp.2805–2816. Available at: https://doi.org/10.1007/s13762-016-1107-z

Bahranowski, K., Dula, R., Gasior, M., Łabanowska, M., Michalik, A., Vartikian, L. A. & Serwicka, E. M. 2001. Oxidation of aromatic hydrocarbons with hydrogen peroxide over Zn, Cu, Al-layered double hydroxides. Journal of Applied clay science, 18(1-2), pp.93-101. Available at: ‏https://doi.org/10.1016/S0169-1317(00)00033-8

Bania, K. K. & Deka, R. C. 2013. Zeolite-y encapsulated metal picolinato complexes as catalyst for oxidation of phenol with hydrogen peroxide. Journal of Physical Chemistry C, 117(22), pp.11663-11678.‏ Available at: https://doi.org/10.1021/jp402439x

Bok, T. O., Andriako, E. P., Knyazeva, E. E. & Ivanova, I.I. 2020. Engineering of zeolite BEA crystal size and morphology via seed-directed steam assisted conversion. Journal of Rsc Advances , 10 (63), 38505-38514. Available at: https://doi.org/10.1039/D0RA07610D

Broekman, J. O. P. & Deuss, P. J. 2024. Insights into the benign, selective catalytic oxidation of HMF to HMFCA in water using [MnIV2 (μ-O) 3 (tmtacn) 2] 2+ and Hydrogen Peroxide. Journal of Organometallics, 43(11), pp.1264-1275.‏ Available at: https://doi.org/10.1021/acs.organomet.4c00109

Camblor, M.A., Corma, A. & Valencia, S. 1996. Spontaneous nucleation and growth of pure silica zeolite-β free of connectivity defects. Journal of Chemical Communications, 20, pp.2365-2366. Available at: https://doi.org/10.1039/CC9960002365

Cao, K., Yang, F., Wan, H., Duan, X., Shi, J. & Sun, Z. 2025. A selective oxidative depolymerization of larch lignin to ethyl vanillate by multifunctional catalysts combining alkaline ionic liquid and polyoxometalates with hydrogen peroxide. International Journal of Biological Macromolecules, 295, p.139642.‏ Available at: https://doi.org/10.1016/j.ijbiomac.2025.139642

Coudurier, G., Naccache, C. & Vedrine, J.C. 1982. Uses of IR spectroscopy in identifying ZSM zeolite structure. Journal of the Chemical Society, Chemical Communications, 24, pp.1413–1415. Available at: https://doi.org/10.1039/C39820001413

Chen, X., Zhou, S., Wang, L., Zhang, C., Gao, S., Yu, D., Cheng, Y., Xiaoqiang, V., Yu, X. & Zhao, Z. 2024. Facile preparation of Fe-Beta zeolite-supported transition metal oxide catalysts and their catalytic performance for the simultaneous removal of NOx and soot. Chinese Journal of Chemical Engineering, 76, pp.10-20. Available at: ‏https://doi.org/10.1016/j.cjche.2024.07.016

Chen, Z., Meng, G., Han, Z., Li, H., Chi, S., Hu, G. & Zhao, X. 2025. Interfacial anchoring cobalt species mediated advanced oxidation: Degradation performance and mechanism of organic pollutants. Journal of Colloid and Interface Science, 679, pp.67-78.‏ Available at: https://doi.org/10.1016/j.jcis.2024.10.097

Devard, A., Brussino, P., Marchesini, F. A. & Ulla, M. A. 2019. Cu (5%)/Al2O3 catalytic performance on the phenol wet oxidation with H2O2: Influence of the calcination temperature. Journal of Environmental Chemical Engineering, 7(4), p.103201. Available at: ‏https://doi.org/10.1016/j.jece.2019.103201

Diallo, M. M., Mijoin, J., Laforge, S. & Pouilloux, Y. 2016. Preparation of Fe-BEA zeolites by isomorphous substitution for oxidehydration of glycerol to acrylic acid. Journal of Catalysis Communications, 79, pp. 58-62.‏ Available at: https://doi.org/10.1016/j.catcom.2016.03.003

Dou, X., Yan, T., Li, W., Zhu, C., Chen, T., Lo, B. T. W., Xiao,H. & Liu, L. 2025. Structure–reactivity relationship of zeolite-confined Rh catalysts for hydroformylation of linear α-olefins. Journal of the American Chemical Society, 147 (3), pp. 2726–2736. Available at: https://doi.org/10.1021/jacs.4c15445

Gabrienko, A. A., Kolganov, A. A., Yashnik, S. A., Kriventsov, V. V. & Stepanov, A. G. 2025. Methane to methanol transformation on Cu2+/H‐ZSM‐5 zeolite. characterization of copper state and mechanism of the reaction. Chemistry–A European Journal, 31(10), e202403167.‏ Available at: https://doi.org/10.1002/chem.202403167

Ghaffari, Y., Gupta, N. K., Bae, J. & Kim, K. S. 2019. Heterogeneous catalytic performance and stability of iron-loaded ZSM-5, zeolite-A, and silica for phenol degradation: a microscopic and spectroscopic approach. Journal of Catalysts, 9(10), p.859.‏ Available at: https://doi.org/10.3390/catal9100859

He, Y., Lin, H., Luo, M., Liu, J., Dong, Y. & Li, B. 2020. Highly efficient remediation of groundwater co-contaminated with Cr (VI) and nitrate by using nano-Fe/Pd bimetal-loaded zeolite: process product and interaction mechanism. Journal of Environmental Pollution, 263, p.114479.‏ Available at: https://doi.org/10.1016/j.envpol.2020.114479

Hunt, J.P. & Taube, H. 1952. The photochemical decomposition of hydrogen peroxide. Journal of the American Chemical Society, 74(23), pp.5999–6002. Available at: https://doi.org/10.1021/ja01143a052

IZA International Zeolite Association. 2018. Database of Zeolite Structures. [online] Available at: https://www.iza-structure.org/databases/ [Accessed : le 27 April 2025]

Ji, F., Li, C., Liu, Y. & Liu, P. 2014. Heterogeneous activation of peroxymonosulfate by Cu/ZSM5 for decolorization of Rhodamine B. Journal of Separation and Purification Technology , 135 , pp.1-6. Available at: ‏https://doi.org/10.1016/j.seppur.2014.07.050

Jiang, S., Zhang, H., Yan, Y. & Zhang, X. 2017. Preparation and characterization of porous Fe-Cu mixed oxides modified ZSM-5 coating/PSSF for continuous degradation of phenol wastewater. Journal of Microporous and Mesoporous Materials, 240, pp.108-116. Available at : https://doi.org/10.1016/j.micromeso.2016.11.020

Jiang, Y., Yu, T., Zeng, S. & Luo, W. 2025. Direct and selective oxidation of methane into methanol over Cu/Fe-containing zeolites. Journal of Molecular Catalysis, 571, p.114721.‏ Available at: https://doi.org/10.1016/j.mcat.2024.114721

Keshri, V. & Dutt, KR. 2021. Inhibitory effect of phenolic and flavonoidal content of H. indicum root extract on 1,1-diphenyl-2-picrylhydrazyl radicals. Research Journal of Pharmaceutical and Technology, 14(1), pp.235-238. Available at: https://doi.org/10.5958/0974-360X.2021.00041.X

Khader, E. H., Khudhur, R. H., Mohammed, T. J., Mahdy, O. S., Sabri, A. A., Mahmood, A. S. & Albayari, T. M. 2024. Evaluation of adsorption treatment method for removal of phenol and acetone from industrial wastewater. Journal of Desalination and Water Treatment, 317, p.100091. Available at: https://doi.org/10.1016/j.dwt.2024.100091

Kumar, N. D. & Swaminathan, M. 2024. Review on hierarchically porous BEA and ZSM-5 zeolites and Its industrial catalytic applications. Journal of ES Materials & Manufacturing, 24, p.1151. Available at: https://doi.org/10.30919/esmm1151

Lee, K. X., Tsilomelekis, G. & Valla, J. A. 2018. Removal of benzothiophene and dibenzothiophene from hydrocarbon fuels using CuCe mesoporous Y zeolites in the presence of aromatics. Journal of Applied Catalysis B: Environmental, 234, pp.130-142.‏ Available at: https://doi.org/10.1016/j.apcatb.2018.04.022

Lin, Q., Feng, X., Zhang, H., Lin, C., Liu, S., Xu, H. & Chen, Y. 2018. Hydrothermal deactivation over CuFe/BEA for NH3-SCR. Journal of industrial and engineering chemistry, 65, pp.40-50.‏ Available at: https://doi.org/10.1016/j.jiec.2018.04.009

Lin, Q., Liu, S., Xu, S., Liu, J., Xu, H., Chen, Y. & Dan, Y. 2020. Fabricate surface structure-stabilized Cu/BEA with hydrothermal-resistant via si-deposition for NOx abatement. Journal of Molecular Catalysis, 495, p.111153.‏ Available at: https://doi.org/10.1016/j.mcat.2020.111153

Liu, H., Kim, G. E., Hong, C. O., Song, Y. C., Lee, W. K., Liu, D., Jang, S.H. & Park, Y. K. 2021. Treatment of phenol wastewater using nitrogen-doped magnetic mesoporous hollow carbon. Journal of Chemiosphere, 271, p.129595. Available at: https://doi.org/10.1016/j.chemosphere.2021.129595

Liu, T., Wang, H., Hu, Z. & Wei, F. 2021. Highly efficient adsorption of thiol compounds by ZSM-5 zeolites: Governing mechanisms. Journal of Microporous and Mesoporous Materials, 316, p.110968.‏ Available at: https://doi.org/10.1016/j.micromeso.2021.110968

Liu, Y., Lu, H. & Wang, G. 2021. Preparation of CuO/HZSM-5 catalyst based on fly ash and its catalytic wet air oxidation of phenol, quinoline and indole. Journal of Materials Research Express, 8(1), p.015503.‏ Available at: https://doi.org/10.1088/2053-1591/abd6a4

Liu, Y., Osta, E. H., Poryvaev, A. S., Fedin, M. V., Longo, A., Nefedov, A. & Kosinov, N. 2023. Direct conversion of methane to zeolite-templated carbons, light hydrocarbons, and hydrogen. Journal of Carbon, 201, pp.535-541.‏ Available at: https://doi.org/10.1016/j.carbon.2022.09.050

Martins, A., Nunes, N., Carvalho, A. P. & Martins, L. M. 2022. Zeolites and related materials as catalyst supports hydrocarbon oxidation reactions. Journal of Catalysts, 12 (2), p.154. Available at: https://doi.org/10.3390/catal12020154

Mohd, A. 2022. Presence of phenol in wastewater effluent and its removal: an overview. International Journal of Environmental Analytical Chemistry, 102(6), pp.1362-1384.‏ Available at: https://doi.org/10.1080/03067319.2020.1738412

Mumtaz, H., Werle, S. & Sobek, S. 2024. A waste wet oxidation technique as a solution for chemical production and resource recovery in Poland. Journal of Clean Technologies and Environmental Policy, 26(5), pp.1363-1382.‏ Available at: https://doi.org/10.1007/s10098-023-02520-4

Nguyen, H. M. & Carreon, M. L. 2022. Non-thermal plasma-assisted deconstruction of high-density polyethylene to hydrogen and light hydrocarbons over hollow ZSM-5 microspheres. Journal of ACS Sustainable Chemistry & Engineering, 10(29), pp. 9480-9491.‏ Available at: https://doi.org/10.1021/acssuschemeng.2c01959

Pan, C., Zhang, Q., Zhang, W., Bao, J., Dai, G., Liu, S.& Lan, J. 2025. Wet scrubbing coupled with advanced oxidation process for removal of chlorobenzene: A study of performance and mechanisms. Journal of Environmental Research, 268, p.120779.‏ Available at: https://doi.org/10.1016/j.envres.2025.120779

Peng, J., Zhou, P., Zhou, H., Huang, B., Sun, M., He, CS., Zhang, H., Ao, Z., Liu, W. & Lai, B. 2023. Removal of phenols by highly active periodate on carbon nanotubes: A mechanistic investigation. Journal of Environmental Science & Technology, 57(29), pp.10804–10815. Available at: https://doi.org/10.1021/acs.est.2c08266

Ren, T. I. A. N., WANG, S. Y., LIAN, C. S., Xu, W. U., Xia, A. N. & XIE, X. M. 2019. Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance. Journal of Fuel Chemistry and Technology, 47(12), pp.1476-1485.‏ Available at: https://doi.org/10.1016/S1872-5813(19)30059-3

Said, K. A. M., Ismail, A. F., Karim, Z. A., Abdullah, M. S. & Hafeez, A. 2021. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Safety and Environmental Protection, 151, pp. 257-289.‏ Available at: https://doi.org/10.1016/j.psep.2021.05.015

Saputera, W. H., Putrie, A. S., Esmailpour, A. A., Sasongko, D., Suendo, V. & Mukti, R. R. 2021. Technology advances in phenol removals: Current progress and future perspectives. Journal of Catalysts, 11(8), p.998.‏ Available at: https://doi.org/10.3390/catal11080998

Sazama, P., Moravkova, J., Sklenak, S., Vondrova, A., Tabor, E., Sadovska, G. & Pilar, R. 2020. Effect of the nuclearity and coordination of Cu and Fe sites in β zeolites on the oxidation of hydrocarbons. Journal of ACS Catalysis, 10(7), pp.3984-4002.‏ Available at: https://doi.org/10.1021/acscatal.9b05431

Selvam, T., Bandarapu, B., Mabande, G. T. P., Toufar, H. & Schwieger, W. 2003. Hydrothermal transformation of a layered sodium silicate, kanemite, into zeolite Beta (BEA). Journal of Microporous and Mesoporous Materials, 64(1-3), 41-50. Available at: https://doi.org/10.1016/S1387-1811(03)00508-0

Shaida, M. A., Verma, S., Talukdar, S., Kumar, N., Mahtab, M. S., Naushad, M. & Farooqi, I. H. 2023. Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. Journal of Molecular Liquids, 374, p.121259.‏ Available at: https://doi.org/10.1016/j.molliq.2023.121259

Shirvani, M., Zhang, T., Gu, Y. & Hosseini-Sarvari, M. 2025. Sorghum grain as a bio-template: Emerging, cost-effective, and metal-free synthesis of C-doped g-C₃N₄ for photo-degradation of antibiotic, bisphenol A (BPA), and phenol under solar light irradiation. Journal of Environmental Science and Pollution Research, 32(4), pp.2036-2054. Available at: https://doi.org/10.1007/s11356-024-35868-1

Sobuś, N. & Czekaj, I. 2021. Comparison of synthetic and natural zeolite catalysts’ behavior in the production of lactic acid and ethyl lactate from biomass-derived dihydroxyacetone. Journal of Catalysts, 11(8), p.1006.‏ Available at: https://doi.org/10.3390/catal11081006

Song, S., Wu, G., Dai, W., Guan, N. & Li, L. 2016. Al-free Fe-beta as a robust catalyst for selective reduction of nitric oxide by ammonia. Journal of Catalysis Science & Technology, 6(23), pp.8325–8335. Available at: https://doi.org/10.1039/C6CY02124G

Sun, H., Li, J., Zhang, Y., Zhuang, L., Zhou, Z., Ren, Y., Xu, X., He, J. & Xue, Y. 2025. Treatment of high concentration phenol wastewater by low-frequency ultrasonic cavitation and long-term pilot scale study. Journal of Chemosphere, 370, p.143937. Available at: https://doi.org/10.1016/j.chemosphere.2024.143937

Sun, L., Zhang, X., Chen, L., Zhao, B., Yang, S. & Xie, X. 2016. Comparison of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 121, pp.342–346. Available at: https://doi.org/10.1016/j.jaap.2016.08.015

Taran, O.P., Zagoruiko, A.N., Yashnik, S.A., Ayusheev, A.B., Pestunov, A.V., Prosvirin, I.P., Prihodko, R.V., Goncharuk, V.V. & Parmon, V.N. 2018. Wet peroxide oxidation of phenol over carbon/zeolite catalysts: Kinetics and diffusion study in batch and flow reactors. Journal of Environmental Chemical Engineering, 6(2), pp.2551–2560. Available at: https://doi.org/10.1016/j.jece.2018.03.017

Thomsen, L. B. S., Anastasakis, K. & Biller, P. 2022. Wet oxidation of aqueous phase from hydrothermal liquefaction of sewage sludge. Journal of Water research, 209, p.117863.‏ Available at: https://doi.org/10.1016/j.watres.2021.117863

Tian, K., Pan, J., Liu, Y., Wang, P., Zhong, M., Dong, Y. & Wang, M. 2024. Fe-ZSM-5 zeolite catalyst for heterogeneous Fenton oxidation of 1, 4-dioxane: effect of Si/Al ratios and contributions of reactive oxygen species. Journal of Environmental Science and Pollution Research , 31 (13), pp.19738-19752. ‏ Available at: https://doi.org/10.1007/s11356-024-32287-0

Toloza-Blanco, L., Góra-Marek, K., Tarach, K. A., Sobalska, J., Martínez-Triguero, J., Plá-Hernandez, A. & Palomares, A. E. 2024. Catalytic oxidation of volatile organic compounds with Mn-zeolites. Journal of Catalysis Today, 432, p.114570.‏ Available at: https://doi.org/10.1016/j.cattod.2024.114570

Treacy, M.M.J. & Higgins, J.B. 2007. Collection of Simulated XRD Powder Patterns for Zeolites (5th ed.). Amsterdam: Elsevier. Available at: https://doi.org/10.1016/B978-0-444-53067-7.X5470-7

Valkaj, K. M., Wittine, O., Margeta, K., Granato, T., Katović, A. & Zrnčević, S. 2011. Phenol oxidation with hydrogen peroxide using Cu/ZSM5 and Cu/Y5 catalysts. Polish Journal of Chemical Technology, 13(3), pp.28-36.‏ Available at: https://doi.org/10.2478/v10026-011-0033-6

Villegas, V. A. R., Ramirez, J. I. D. L., Perez-Sicairos, S., Yocupicio-Gaxiola, R. I., González-Torres, V. & Petranovskii, V. 2024. Catalyst for lactose hydrolysis based on zeolite Y modified with Fe species by ultrasound treatment. Journal of Environmental Advances, 15, p.100475.‏ Available at: https://doi.org/10.1016/j.envadv.2023.100475

Wang, H., Xu, R., Jin, Y. & Zhang, R. 2019. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts. Journal of Catalysis Today, 327, pp.295-307. Available at: https://doi.org/10.1016/j.cattod.2018.04.035

Wu, Y., Zhang, H. & Yan. Y. 2020. Effect of copper ion-exchange on catalytic wet peroxide oxidation of phenol over ZSM-5 membrane. Journal of Environmental Management, 270, p.110907.‏ Available at: https://doi.org/10.1016/j.jenvman.2020.110907

Xie, J., Zhuang, W., Yan, N., Du, Y., Xi, S., Zhang, W., Tang, J., Zhou, Y. & Wang, J. 2017. Directly synthesized V-containing BEA zeolite: Acid-oxidation bifunctional catalyst enhancing C-alkylation selectivity in liquid-phase methylation of phenol. Chemical engineering journal, 328, pp.1031-1042.‏ Available at: https://doi.org/10.1016/j.cej.2017.07.100

Zang, J., Yu, H., Liu, G., Hong, M., Liu, J. & Chen, T. 2023. Research progress on modifications of zeolite Y for improved catalytic properties. Journal of Inorganics, 11(1), p.22. Available at: https://doi.org/10.3390/inorganics11010022

Zhang, J., Shao, S., Guo, Q., Duan, X., Liu, Y. & Jiao, W. 2025. Co-removal of phenol and Cr (VI) by high gravity coupled heterogeneous catalytic ozonation-adsorption. Journal of Separation and Purification Technology, 358(Part A), p.130297. Available at: https://doi.org/10.1016/j.chemosphere.2024.143937

Zhou, X., Wang, M., Yan, D., Li, Q. & Chen, H. 2019. Synthesis and performance of high efficient diesel oxidation catalyst based on active metal species-modified porous zeolite BEA. Journal of Catalysis, 379, 138-146. Available at: https://doi.org/10.1016/j.jcat.2019.09.029

Objavljeno
2025/12/17
Rubrika
Originalni naučni radovi