Explicit expressions of the generalized Stieltjes polynomial
Abstract
The existence and uniqueness of a Kronrod type extension to the well-known Gauss-Turan quadrature formulas were proved by Li (1994, pp.71-83). For the generalized Chebyshev weight functions and for the Gori-Micchelli weight function, we found explicit formulas of the corresponding generalized Stieltjes polynomials. General real Kronrod extensions of the Gaussian quadrature formulas with multiple nodes are introduced. In some cases, the explicit expressions of the polynomials, whose zeros are the nodes of the considered quadratures, are determined.
References
Bernstein, S., 1930. Sur les polynomes orthogonaux relatifs a un segment fini. J. Math. Pures Appl., 9, pp.127-177.
Galjak, L., 2006. Kronrod extensions of Gaussian quadratures with multiple nodes. Univesity of Kragujevac. Master work.
Gautschi, W., & Li, S., 1990. The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple points. J. Comput. Appl. Math., 33, pp.315-329. Available at:https://doi.org/10.1016/S0377-0427(05)80007-X.
Ghizzetti, A., & Ossicini, A., 1995. Quadrature formulae. Berlin: Akademie-Verlag.
Karlin, S., & Pinkus, A., 1976. Gaussian quadrature formulae with multiple nodes. In: S. Karlin, C.A. Micchelli, A. Pinkus, & I.J. Schoenberg Eds., Studies in Spline Functions and Approximation Theory. New York: Academic Press, pp.113-141.
Li, S., 1994. Kronrod extension of Turan formula. Studia Sci. Math. Hungar, 29, pp.71-83.
Milovanović, G.V., 2001. Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation. In: Numerical analysis 2000, vol. V, Quadrature and orthogonal polynomials, (W. Gautschi, F. Marcellan, L. Reichel, Eds). J. Comput. Appl.Math., 127, pp.267-286.
Milovanović, G.V., & Spalević, M.M., 2002. Quadrature formulae connected to -orthogonal polynomials. J. Comput. Appl. Math., 140, pp.619-637.
Milovanović, G.V., & Spalević, M.M., 2003. Error bounds for Gauss-Turán quadrature formulae of analytic functions. Mathematics of Computation, 72(244), pp.1855-1873. Available at:http://dx.doi.org/10.1090/S0025-5718-03-01544-8.
Milovanović, G.V., & Spalević, M.M., 2006. Gauss–Turán quadratures of Kronrod type for generalized Chebyshev weight functions. Calcolo, 43(3), pp.171-195. Available at:http://dx.doi.org/10.1007/s10092-006-0121-9.
Milovanović, G.V., Spalević, M.M., & Galjak, L. 2006a. Kronrod extensions of Gaussian quadratures with multiple nodes. Computational Methods in Applied Mathematics, 6(1), pp.291-305.
Milovanović, G.V., Spalević, M.M., & Galjak, L., 2006b. Kronrod extensions of Gaussian quadratures with multiple nodes. In: ICNAM, 2016-09-27, Kragujevac, pp.22-28
Milovanović, G.V., Spalević, M.M., & Paunović, L., 2009. Error bounds of Gauss-Turan-Kronrod quadratures with Gori-Micchelli weight for analytic functions. In: MIT, 2009, Kopaonik, pp.246-250, August.
Monegato, G., 2001. An overview of the computational aspects of Kronrod quadrature rules. Numer.Algorithms , 26(2), pp.173-196. Available at: http://dx.doi.org/10.1023/A:1016640617732.
Ossicini, A., & Rosati, F., 1975. Funzioni caratteristiche nelle formule di quadrature gaussiane con nodi multipli. Boll.Un. Mat. Ital., 11(4), pp.224-237.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).