Explicit expressions of the generalized Stieltjes polynomial

  • Ljiljana R. Paunović Paunović, Lj. ljiljana.paunovic76@gmail.com Matematika Review
Keywords: Stieltjes polynomials, Kronrod extension, Gori-Micchelli weight function,

Abstract


The existence and uniqueness of a Kronrod type extension to the well-known Gauss-Turan quadrature formulas were proved by Li (1994, pp.71-83). For the generalized Chebyshev weight functions and for the Gori-Micchelli weight function, we found explicit formulas of the corresponding generalized Stieltjes polynomials. General real Kronrod extensions of the Gaussian quadrature formulas with multiple nodes are introduced. In some cases, the explicit expressions of the polynomials, whose zeros are the nodes of the considered quadratures, are determined.

 

Author Biography

Ljiljana R. Paunović, Paunović, Lj. ljiljana.paunovic76@gmail.com Matematika Review
Docent na Učiteljskom fakultetu u Leposaviću

References

Bernstein, S., 1930. Sur les polynomes orthogonaux relatifs a un segment fini. J. Math. Pures Appl., 9, pp.127-177.

Galjak, L., 2006. Kronrod extensions of Gaussian quadratures with multiple nodes. Univesity of Kragujevac. Master work.

Gautschi, W., & Li, S., 1990. The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple points. J. Comput. Appl. Math., 33, pp.315-329. Available at:https://doi.org/10.1016/S0377-0427(05)80007-X.

Ghizzetti, A., & Ossicini, A., 1995. Quadrature formulae. Berlin: Akademie-Verlag.

Karlin, S., & Pinkus, A., 1976. Gaussian quadrature formulae with multiple nodes. In: S. Karlin, C.A. Micchelli, A. Pinkus, & I.J. Schoenberg Eds., Studies in Spline Functions and Approximation Theory. New York: Academic Press, pp.113-141.

Li, S., 1994. Kronrod extension of Turan formula. Studia Sci. Math. Hungar, 29, pp.71-83.

Milovanović, G.V., 2001. Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation. In: Numerical analysis 2000, vol. V, Quadrature and orthogonal polynomials, (W. Gautschi, F. Marcellan, L. Reichel, Eds). J. Comput. Appl.Math., 127, pp.267-286.

Milovanović, G.V., & Spalević, M.M., 2002. Quadrature formulae connected to -orthogonal polynomials. J. Comput. Appl. Math., 140, pp.619-637.

Milovanović, G.V., & Spalević, M.M., 2003. Error bounds for Gauss-Turán quadrature formulae of analytic functions. Mathematics of Computation, 72(244), pp.1855-1873. Available at:http://dx.doi.org/10.1090/S0025-5718-03-01544-8.

Milovanović, G.V., & Spalević, M.M., 2006. Gauss–Turán quadratures of Kronrod type for generalized Chebyshev weight functions. Calcolo, 43(3), pp.171-195. Available at:http://dx.doi.org/10.1007/s10092-006-0121-9.

Milovanović, G.V., Spalević, M.M., & Galjak, L. 2006a. Kronrod extensions of Gaussian quadratures with multiple nodes. Computational Methods in Applied Mathematics, 6(1), pp.291-305.

Milovanović, G.V., Spalević, M.M., & Galjak, L., 2006b. Kronrod extensions of Gaussian quadratures with multiple nodes. In: ICNAM, 2016-09-27, Kragujevac, pp.22-28

Milovanović, G.V., Spalević, M.M., & Paunović, L., 2009. Error bounds of Gauss-Turan-Kronrod quadratures with Gori-Micchelli weight for analytic functions. In: MIT, 2009, Kopaonik, pp.246-250, August.

Monegato, G., 2001. An overview of the computational aspects of Kronrod quadrature rules. Numer.Algorithms , 26(2), pp.173-196. Available at: http://dx.doi.org/10.1023/A:1016640617732.

Ossicini, A., & Rosati, F., 1975. Funzioni caratteristiche nelle formule di quadrature gaussiane con nodi multipli. Boll.Un. Mat. Ital., 11(4), pp.224-237.

Published
2017/06/29
Section
Review Papers