Deep learning channel estimation for 5G wireless communications

Keywords: deep learning, CNN, 5G communication systems, very deep super resolution

Abstract


Introduction/purpose: In recent years, deep learning techniques, particularly Convolutional Neural Networks (CNNs), have demonstrated remarkable performance in 5G communication systems by significantly improving the accuracy of channel estimation compared to conventional methods. This article aims to provide a comprehensive review of the existing literature on CNN-based channel estimation techniques, as well as to enhance the state-of-the-art CNN-based channel estimation methods by proposing a novel method called VDSR (Very Deep Super Resolution), inspired by Image Super-Resolution techniques.

Methods: To evaluate the effectiveness of various approaches, we conduct a comprehensive comparison considering different scenarios, including low Signal-to-Noise-Ratio (SNR) and high SNR, as well as Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) scenarios. Through this comparative analysis, we assess the performance of the existing methods and highlight the advantages offered by the proposed VDSR-based technique.

Results: Our findings reveal a significant potential of CNN-based channel estimation in 5G communication systems, with the VDSR method demonstrating a consistent performance across all scenarios. This research contributes to the advancement of channel estimation techniques in 5G networks, paving the way for enhanced wireless communication systems with improved reliability.

Conclusion: The VDSR architecture demonstrates remarkable adaptability to different types of channels, which results in achieving requested performances for all analyzed SNR values.

References

-3GPP. 2018. 5G, NR, Physical layer, General description, Technical specification (3GPP TS 38.201 version 15.0.0 Release 15) [online]. Available at: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3211 [Accessed: 10 August 2023].

-3GPP. 2020a. 5G, NR, Physical channels and modulation, Technical Specification (3GPP TS 38.211 version 16.2.0 Release 16) [online]. Available at: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3213 [Accessed: 10 August 2023].

-3GPP. 2020b. 5G, Study on channel model for frequencies from 0.5 to 100 GHz, Technical Report (3GPP TR 38.901 version 16.1.0 Release 16) [online]. Available at: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173 [Accessed: 10 August 2023].

Albreem, M.A.M. 2015. 5G wireless communication systems: Vision and challenges. In: 2015 International Conference on Computer, Communications, and Control Technology (I4CT). Kuching, Malaysia, pp.493-497, April 21-23. Available at: https://doi.org/10.1109/I4CT.2015.7219627.

Banerjee, B., Khan, Z., Lehtomäki, J.J. & Juntti, M. 2022. Deep Learning Based Over-the-Air Channel Estimation Using a ZYNQ SDR Platform. IEEE Access, 10, pp. 60610–60621. Available at: https://doi.org/10.1109/ACCESS.2022.3180352.

Dong, C., Loy, C.C., He, K. & Tang, X. 2015. Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), pp. 295–307. Available at: https://doi.org/10.1109/TPAMI.2015.2439281.

Gizzini, A.K., Chafii, M., Nimr, A., Shubair, R.M. & Fettweis, G. 2021. CNN Aided Weighted Interpolation for Channel Estimation in Vehicular Communications. IEEE Transactions on Vehicular Technology, 70(12), pp. 12796–12811. Available at: https://doi.org/10.1109/TVT.2021.3120267.

James, A.R., Benjamin, R.S., John, S., Joseph, T.M., Mathai, V. & Pillai, S.S. 2011. Channel estimation for OFDM systems. In: 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies. Thuckalay, India, pp.587-591, July 21-22. Available at: https://doi.org/10.1109/ICSCCN.2011.6024619.

Kaur, J., Khan, M.A., Iftikhar, M., Imran, M. & Haq, Q.E.U. 2021. Machine Learning Techniques for 5G and Beyond. IEEE Access, 9, pp. 23472–23488. Available at: https://doi.org/10.1109/ACCESS.2021.3051557.

Kim, J., Lee, J.K. & Lee, K.M. 2016. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, pp.1646–1654, June 27-30. Available at: https://doi.org/10.1109/CVPR.2016.182.

Ma, Z., Zhang, Z., Ding, Z., Fan, P. & Li, H. 2015. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Science China Information Sciences, 58(4), pp. 1–20. Available at: https://doi.org/10.1007/s11432-015-5293-y.

Morocho-Cayamcela, M.E., Lee, H. & Lim, W. 2019. Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Future Directions. IEEE Access, 7, pp. 137184–137206. Available at: https://doi.org/10.1109/ACCESS.2019.2942390.

Simonyan, K. & Zisserman, A. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556. Available at: https://doi.org/10.48550/arXiv.1409.1556.

Soltani, M., Pourahmadi, V., Mirzaei, A. & Sheikhzadeh, H. 2019. Deep Learning-Based Channel Estimation. IEEE Communications Letters, 23(4), pp.652–655. Available at: https://doi.org/10.1109/LCOMM.2019.2898944.

Wang, C.X., Bian, J., Sun, J., Zhang, W. & Zhang, M. 2018. A Survey of 5G Channel Measurements and Models. IEEE Communications Surveys & Tutorials, 20(4), pp. 3142–3168. Available at: https://doi.org/10.1109/COMST.2018.2862141.

Ye, H., Li, G.Y. & Juang, B.H. 2017. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wireless Communications Letters, 7(1), pp. 114–117. Available at: https://doi.org/10.1109/LWC.2017.2757490.

Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. 2017. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE transactions on image processing, 26(7), pp. 3142–3155. Available at: https://doi.org/10.1109/TIP.2017.2662206.

Published
2023/12/04
Section
Original Scientific Papers