Procena kanala dubokog učenja za 5G bežične komunikacije
Sažetak
Uvod/cilj: Tehnike dubokog učenja, posebno konvolucione neuronske mreže (CNN), poslednjih godina pokazale su izuzetne performanse u 5G komunikacionim sistemima tako što su značajno poboljšale tačnost procene kanala u poređenju sa konvencionalnim metodama. U ovom radu predstavljen je sveobuhvatan pregled postojeće literature o teh-nikama procene kanala zasnovanih na CNN-u. Pored toga, osnovni cilj rada jeste unapređivanje najsavremenijih metoda za procenu kanala zasnovanih na CNN-u, što je rezultiralo predlaganjem nove metode pod nazivom VDSR (Very Deep Super Resolution), inspirisane tehnikama Super Resolution slike.
Metode: Da bi se izvršila procena efikasnosti različitih pristupa, sprovedeno je sveobuhvatno poređenje različitih scenarija, uključujući nizak odnos signal-šum (SNR) i visok SNR, kao i liniju optičke vidljivosti (LOS) i scenario bez vidljivosti (NLOS). Kroz ovu komparativnu analizu procenjene su performanse postojećih metoda i istaknute prednosti koje nudi predložena tehnika zasnovana na VDSR.
Rezultati: Na osnovu dobijenih rezultata otkriven je značajan potencijal procene kanala zasnovanog na CNN-u u 5G komunikacionim sistemima, pri čemu VDSR metod pokazuje konstantnu prednost u svim scenarijima. Osnovni cilj istraživanja jeste unapređenje tehnika procene kanala u 5G mrežama, čime se daju osnove poboljšanim bežičnim komunikacionim sistemima sa većom pouzdanošću.
Zaključak: VDSR arhitektura pokazuje izuzetnu prilagodljivost različitim vrstama kanala, što rezultira obezbeđenjem zahtevanih performansi za sve analizirane vrednosti SNR.
Reference
-3GPP. 2018. 5G, NR, Physical layer, General description, Technical specification (3GPP TS 38.201 version 15.0.0 Release 15) [online]. Available at: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3211 [Accessed: 10 August 2023].
-3GPP. 2020a. 5G, NR, Physical channels and modulation, Technical Specification (3GPP TS 38.211 version 16.2.0 Release 16) [online]. Available at: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3213 [Accessed: 10 August 2023].
-3GPP. 2020b. 5G, Study on channel model for frequencies from 0.5 to 100 GHz, Technical Report (3GPP TR 38.901 version 16.1.0 Release 16) [online]. Available at: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173 [Accessed: 10 August 2023].
Albreem, M.A.M. 2015. 5G wireless communication systems: Vision and challenges. In: 2015 International Conference on Computer, Communications, and Control Technology (I4CT). Kuching, Malaysia, pp.493-497, April 21-23. Available at: https://doi.org/10.1109/I4CT.2015.7219627.
Banerjee, B., Khan, Z., Lehtomäki, J.J. & Juntti, M. 2022. Deep Learning Based Over-the-Air Channel Estimation Using a ZYNQ SDR Platform. IEEE Access, 10, pp. 60610–60621. Available at: https://doi.org/10.1109/ACCESS.2022.3180352.
Dong, C., Loy, C.C., He, K. & Tang, X. 2015. Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), pp. 295–307. Available at: https://doi.org/10.1109/TPAMI.2015.2439281.
Gizzini, A.K., Chafii, M., Nimr, A., Shubair, R.M. & Fettweis, G. 2021. CNN Aided Weighted Interpolation for Channel Estimation in Vehicular Communications. IEEE Transactions on Vehicular Technology, 70(12), pp. 12796–12811. Available at: https://doi.org/10.1109/TVT.2021.3120267.
James, A.R., Benjamin, R.S., John, S., Joseph, T.M., Mathai, V. & Pillai, S.S. 2011. Channel estimation for OFDM systems. In: 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies. Thuckalay, India, pp.587-591, July 21-22. Available at: https://doi.org/10.1109/ICSCCN.2011.6024619.
Kaur, J., Khan, M.A., Iftikhar, M., Imran, M. & Haq, Q.E.U. 2021. Machine Learning Techniques for 5G and Beyond. IEEE Access, 9, pp. 23472–23488. Available at: https://doi.org/10.1109/ACCESS.2021.3051557.
Kim, J., Lee, J.K. & Lee, K.M. 2016. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, pp.1646–1654, June 27-30. Available at: https://doi.org/10.1109/CVPR.2016.182.
Ma, Z., Zhang, Z., Ding, Z., Fan, P. & Li, H. 2015. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Science China Information Sciences, 58(4), pp. 1–20. Available at: https://doi.org/10.1007/s11432-015-5293-y.
Morocho-Cayamcela, M.E., Lee, H. & Lim, W. 2019. Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Future Directions. IEEE Access, 7, pp. 137184–137206. Available at: https://doi.org/10.1109/ACCESS.2019.2942390.
Simonyan, K. & Zisserman, A. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556. Available at: https://doi.org/10.48550/arXiv.1409.1556.
Soltani, M., Pourahmadi, V., Mirzaei, A. & Sheikhzadeh, H. 2019. Deep Learning-Based Channel Estimation. IEEE Communications Letters, 23(4), pp.652–655. Available at: https://doi.org/10.1109/LCOMM.2019.2898944.
Wang, C.X., Bian, J., Sun, J., Zhang, W. & Zhang, M. 2018. A Survey of 5G Channel Measurements and Models. IEEE Communications Surveys & Tutorials, 20(4), pp. 3142–3168. Available at: https://doi.org/10.1109/COMST.2018.2862141.
Ye, H., Li, G.Y. & Juang, B.H. 2017. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wireless Communications Letters, 7(1), pp. 114–117. Available at: https://doi.org/10.1109/LWC.2017.2757490.
Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. 2017. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE transactions on image processing, 26(7), pp. 3142–3155. Available at: https://doi.org/10.1109/TIP.2017.2662206.
Sva prava zadržana (c) 2023 Mohammed zouaoui M. Laidouni, Taki-eddine Ahmed A. Benyahia, Boban Z. Pavlović , Salem-Bilal B. Amokrane, Touati B. Adli
Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).