Kinetics of yttrium dissolution from waste ceramic dust

  • Srećko R. Stopić Institut za procesnu metalurgiju i recikliranje metala Tehnickog Univerziteta u Ahenu
  • Bernd G. Friedrich RWTH Aachen University, Faculty of Georesources and Materials Engineering, IME Process Metallurgy and Metal Recycling, Aachen
Keywords: yttrium, recycling, hydrometallurgy, ceramics,

Abstract


Yttrium is a silvery transition metal and has similar chemical properties to lanthanoids. Because of this similarity, yttrium belongs to rare earth elements. Ytttrium and yttrium oxide are mostly used in fluoroscent lamps, production of electrodes, in electronic filters, lasers, superconductors and as additives in various materials to improve their properties. Yttrium is mainly recovered from the minerals monazite [(Ce,La,Th,Nd,Y)PO4] and xenotime YPO4.The presence of radioactive elements such as thorium and uranium in the ore makes it difficult to separate yttrium oxide from primary raw materials. Environmental regulations are getting stricter every year, thus increasing the risk of lacking the supply of rare earths. Therefore, recovery of yttrium oxide from secondary sources such as red mud, coatings from ceramic industry and phosphors is extremely important. The main aim of this study is to examine the yttrium dissolution kinetics from waste ceramic dust using hydrochloric acid.

 

Author Biography

Srećko R. Stopić, Institut za procesnu metalurgiju i recikliranje metala Tehnickog Univerziteta u Ahenu

Private Dozent Dr.-Ing. habil.

Rodjen 03.04.1965 u Uzicu

1991-Dipl.-Ing. metalurgije, 1994-Magistar metalurgije, 1997-Doktor Metalurgije, 2001-PostDoc Humboltova stipendija na Tehnickom Univerzitetu u Ahenu, 2005-nagrada u metalurgiji bakra u Stolbergu, 2012-Kaiserpfalz nagrada za obojenu Metalurgiju u Goslaru, 2014-Privat Dozent izavrsena habilitacija

References

Amaral, J., & Morais, C. 2010. Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Minerals Engineering, 23, pp.498-503.

Binnemans, K., Jones, P.T., Blanpain, B., van Gerven, T., Yang, Y., Walton, A., & Buchert, M. 2013. First comprehensive review paper on rare-earth recycling: Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, pp.1-22.

Ibrahim, T., & El-Hussaini, 2007. Production of anydrite-gypsum and recobvery of rare earths as a by-product.Hydrometallurgy, 87, pp.11-17.

Kim, E., & Osseo-Asare, K. 2012. Aqueous stability of thorium and rare earth elements in monazite hydrometallurgy.Hydrometallurgy, 113-114, pp.67-78.

Kuzmin, V., & et al., 2012. Combined approaches for comprehensive processing of rare earth metal ores. Hydrometallurgy, 129-130, pp.1-6.

Mackowski, S.J., & et al., 2009. Recovery of Rare earth elements, US Patent 0272230 A1.

Poscher, Luidold, A., Kaindl, S., & Antrekowitsch, M. 2013. Recycling of rare earth from spent phosphors. . In: Proceeding of EMC Conference. , pp.1217-1222

Stopić, S., & Friedrich, B. 2011. Pressure hydrometallurgy: A new chance to non-polluting processes. Vojnotehnički glasnik/Military Technical Courier, 59(3), pp.29-44.

Sung-Don, K., Jin-Young, L., Chul-Joo, K., Ho-Sung, Y., & Joon-Soo, K. 2010. NaOH Decomposition and Hydrochloric acid leaching by hot digestion method. Journal of the Korean Institute of Resources Recycling, 19(6), pp.70-76.

Published
2016/04/04
Section
Original Scientific Papers